Skip to main content
Log in

Adaptive search range control in H.265/HEVC with error propagation resilience and hierarchical adjustment

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In the state-of-the-art video coding standards H.26 4/AVC and H.265/HEVC, adaptive search range (ASR) control has achieved a significant performance in reducing the computational complexity of motion estimation. Nevertheless, the application of ASR in adjacent coding units may bring error propagation, and the ASR values may vary subject to different layers in hierarchical prediction structure. Here we propose two separate algorithms for ASR in H.265/HEVC: an error propagation resilience algorithm that eliminates the rate-distortion (RD) loss due to error propagation, and a hierarchical range adjustment algorithm that adjusts the ASR values between hierarchical layers. Simulation results show that our methods greatly improve the RD performances of traditional ASR works whilst keeping almost intact complexity reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sullivan, G.J., Ohm, J.R., Han, W.J., et al.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  2. Wiegand, T., Sullivan, G.J., Bjontegaard, G., et al.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. 13(7), 560–576 (2003)

    Google Scholar 

  3. Liao Z. T., Shen C. A.: A novel search window selection scheme for the motion estimation of HEVC systems, In: International Soc Design Conference, pp. 267-268, IEEE, Gyeongju, South Korea (2015)

  4. Sung M., Kim M. W., Kim M., et al.: Accelerating HEVC transcoder by exploiting decoded quadtree, In: International Symposium on Consumer Electronics, pp. 1–2. IEEE, Jeju, South Korea(2014)

  5. Lee, T.K., Chan, Y.L., Siu, W.C.: Adaptive search range by neighbouring depth intensity weighted sum for HEVC texture coding. Electron. Lett. 52(12), 1018–1020 (2016)

    Article  Google Scholar 

  6. Huang X. Q., Kuo C. H., Mao C. P., et al.: Adaptive depth search range for HEVC coding unit size selection, In: Signal and Information Processing Association Summit and Conference, pp. 1-6, IEEE, Chiangmai, Thailand (2014)

  7. Lee, T.K., Chan, Y.L., Siu, W.C.: Adaptive search range for HEVC motion estimation based on depth information. IEEE Trans. Circuits Syst. Video Technol. 99, 1–15 (2016)

    Article  Google Scholar 

  8. Lee, T.K., Chan, Y.L., Siu, W.C.: Depth-based adaptive search range algorithm for motion estimation in HEVC, In: International Conference on Digital Signal Processing, pp. 919–923, IEEE, Hongkong, China (2014)

  9. Shen, L., Zhang, Z., Liu, Z.: Effective CU size decision for HEVC intracoding. IEEE Trans. Image Process. 23(10), 4232–4241 (2014)

    Article  MathSciNet  Google Scholar 

  10. Shen, L., Zhang, Z., Liu, Z.: Adaptive inter-mode decision for HEVC jointly utilizing inter-level and spatiotemporal correlations. IEEE Trans. Circuits Syst. Video Technol. 24(10), 1709–1722 (2014)

    Article  Google Scholar 

  11. Meher, P.K., Sang, Y.P., Mohanty, B.K., et al.: Efficient integer DCT architectures for HEVC. IEEE Trans. Circuits Syst. Video Technol. 24(1), 168–178 (2014)

    Article  Google Scholar 

  12. Yang, X., Shen, J., Liang, C., et al.: Fast DCT-based image saliency detection. In: Global High Tech Congress on Electronics, pp. 60–61, IEEE, ShenZhen, China (2012)

  13. Sang, Y.P., Meher, P.K.: Flexible integer DCT architectures for HEVC. In: International Symposium on Circuits and Systems, pp. 1376–1379, IEEE, Beijing, China (2013)

  14. Masera, M., Martina, M., Masera, G.: Adaptive approximated DCT architectures for HEVC. IEEE Trans. Circuits Syst. Video Technol. 99, 1–12 (2016)

    Article  Google Scholar 

  15. Choi, C., Jeong, J.: Fast motion estimation algorithm using dual bit-plane matching criteria. In: International Convention on Information and Communication Technology. Electronics and Microelectronics, pp. 398–401. IEEE, Opatija, Croatia (2014)

  16. Purnachand, N., Alves, L.N., Navarro, A.: Fast motion estimation algorithm for HEVC, In: International Conference on Consumer Electronics, pp. 34–37. IEEE, Berlin, Germany (2012)

  17. Nguyen, T., Nguyen, P., Nguyen, P., Dinh., C.: A novel search pattern for Motion Estimation in High Efficiency Video Coding. In: International Conference on Computer Communication & Informatics, pp. 1-6. IEEE, Coimbatore, India (2016)

  18. Ko, Y.H., Kang, H.S., Lee, S.W.: Adaptive search range motion estimation using neighboring motion vector differences. IEEE Trans. Consum. Electron. 27(2), 726–730 (2011)

    Article  Google Scholar 

  19. Ko, Y.H., Kang, H.S. Suh, J.W.: Fast motion estimation algorithm combining search point sampling technique with adaptive search range algorithm, In: International Midwest Symposium on Circuits & Systems, pp. 988–991. IEEE, Idaho, USA (2012)

  20. Jia, L., Au, O.C., Tsu, C. et al.: A diamond search windowbased adaptive search range algorithm. In: International Conference on Multimedia & Expo Workshop, pp. 1–4, IEEE, California, USA (2013)

  21. Dai, W., Au, O.C., Li, S., Sun, L., Zou, R.: Adaptive search range algorithm based on Cauchy distribution. In: Visual communications & Image Processing, pp. 1–5, IEEE, California, USA(2012)

  22. Bossen, F.: HM 10 common test conditions and software reference configurations. In: 12th JCT-VC meeting, pp. 1–3. Geneva, Switzerland (2013)

  23. Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. 22(12), 1649–1668 (2012)

    Google Scholar 

  24. Bjontegaard, G.: Calculation of average PSNR differences between RD-curves. In: Document ITU-T VCEG-M33, pp. 1–4. Texas, USA (2001)

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (No. 61671152, 61571129, 61601126), the Cross-strait joint fund of NSF China (No. U1405251) and the Natural Science Foundation of Fujian Province of China (No. 2015J01250, 2016J01299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiesong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Li, Q., Chen, J. et al. Adaptive search range control in H.265/HEVC with error propagation resilience and hierarchical adjustment. SIViP 11, 1559–1566 (2017). https://doi.org/10.1007/s11760-017-1120-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1120-9

Keywords

Navigation