Skip to main content
Log in

Steady-state behavior of the improved normalized subband adaptive filter algorithm and its improvement in under-modeling

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In practice, adaptive filter could work in an under-modeling scenario, meaning that its length is less than that of the unknown system. In this realistic situation, therefore, the existing analysis for the improved normalized subband adaptive filter (INSAF) algorithm is not applicable. To this end, this paper analyzes the mean square steady-state performance of the INSAF for under-modeling. In addition, we propose a variable step size INSAF algorithm suitable for under-modeling scenario, to obtain fast convergence rate and low steady-state error. Simulation results have supported our theoretical analysis and proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This condition is consistent with the sufficient length case, i.e., \(M=L\), see appendix in [29].

References

  1. Benesty, J., Huang, Y.: Adaptive Signal Processing—Applications to Real-World P. Springer-Verlag, Berlin (2003)

    MATH  Google Scholar 

  2. Guan, S., Li, Z.: Optimal step size of least mean absolute third algorithm. Signal Image Video Process (2017). https://doi.org/10.1007/s11760-017-1064-0

    Google Scholar 

  3. Liu, J., Grant, S.L.: Proportionate adaptive filtering for block-sparse system identification. IEEE/ACM Trans. Audio Speech Lang. Process 24(4), 623–630 (2016)

    Article  Google Scholar 

  4. Lee, K.A., Gan, W.S., Kuo, S.M.: Subband Adaptive Filtering: Theory and Implementation. Wiley, Hoboken (2009)

    Book  Google Scholar 

  5. Lee, K.A., Gan, W.S.: Improving convergence of the NLMS algorithm using constrained subband updates. IEEE Signal Process. Lett. 11(9), 736–739 (2004)

    Article  Google Scholar 

  6. Ni, J., Li, F.: A variable step-size matrix normalized subband adaptive filter. IEEE Trans. Audio Speech Lang. Process. 18(6), 1290–1299 (2010)

    Article  Google Scholar 

  7. Jeong, J.J., Koo, K., Choi, G.T., Kim, S.W.: A variable step size for normalized subband adaptive filters. IEEE Signal Process. Lett. 19(12), 906–909 (2012)

    Article  Google Scholar 

  8. Yu, Y., Zhao, H., Chen, B.: A new normalized subband adaptive filter algorithm with individual variable step sizes. Circuits Syst. Signal Process. 35(4), 1407–18 (2016)

    Article  MathSciNet  Google Scholar 

  9. Yu, Y., Zhao, H.: A joint-optimization NSAF algorithm based on the first-order Markov model. Signal Image Video Process. 11(3), 509–516 (2017)

    Article  Google Scholar 

  10. Song, M.K., Kim, S.E., Choi, Y.S., Song, W.J.: Selective normalized subband adaptive filter with subband extension. IEEE Trans. Circuits Syst. II Exp. Pap. 60(2), 101–105 (2013)

    Article  Google Scholar 

  11. Petraglia, M.R., Haddad, D.B., Marques, E.L.: Normalized subband adaptive filtering algorithm with reduced computational complexity. IEEE Trans. Circuits Syst. II Exp. Pap. 62(12), 1164–1168 (2015)

    Article  Google Scholar 

  12. Lu, L., Zhao, H., Chen, C.: A new normalized subband adaptive filter under minimum error entropy criterion. Signal Image Video Process. 10(6), 1097–1103 (2016)

    Article  Google Scholar 

  13. Ni, J.: Improved normalised subband adaptive filter. Electron. Lett. 48(6), 320–321 (2012)

    Article  Google Scholar 

  14. Lee, K.A., Gan, W.S., Kuo, S.M.: Mean-square performance analysis of the normalized subband adaptive filter. In: Proceedings of 40th Asilomar Conference on Signals, Systems and Computers, pp. 248–252 (2006)

  15. Yin, W., Mehr, A.S.: Stochastic analysis of the normalized subband adaptive filter algorithm. IEEE Trans. Circuits Syst I Reg. Pap. 58(5), 1020–1033 (2011)

    Article  MathSciNet  Google Scholar 

  16. Jeong, J.J., Koo, K., Koo, G., Kim, S.W.: Steady-state mean-square deviation analysis of improved normalized subband adaptive filter. Signal Process. 106, 49–54 (2015)

    Article  Google Scholar 

  17. Paleologu, C., Ciochină, S., Benesty, J.: Variable step-size NLMS algorithm for under-modeling acoustic echo cancellation. IEEE Signal Process. Lett. 15, 5–8 (2008)

    Article  Google Scholar 

  18. Paleologu, C., Ciochină, S., Benesty, J.: Double-talk robust VSS-NLMS algorithm for under-modeling acoustic echo cancellation. In: Proceedings of IEEE International Conference on Acoustic, Speech, Signal Process. (ICASSP), Las Vegas, NV, pp. 245–248 (2008)

  19. Mayyas, K.: Performance analysis of the deficient length LMS adaptive algorithm. IEEE Trans. Signal Process. 53(8), 2727–2734 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, Y., Chambers, J.A., Sanei, S., Kendrick, P., Cox, T.J.: A new variable tap-length LMS algorithm to model an exponential decay impulse response. IEEE Signal Process. Lett. 14(4), 263–266 (2007)

    Article  Google Scholar 

  21. Wu, M., Yang, J., Xu, Y., Qiu, X.: Steady-state solution of the deficient length constrained FBLMS algorithm. IEEE Trans. Signal Process. 60(12), 6681–6687 (2012)

    Article  MathSciNet  Google Scholar 

  22. Azarnia, G., Tinati, M.A.: Steady-state analysis of the deficient length incremental LMS adaptive networks. Circuits Syst. Signal Process. 34(9), 2893–2910 (2015)

    Article  MathSciNet  Google Scholar 

  23. Jeong, J.J., Kim, S.H., Koo, G., Kim, S.W.: Mean-square deviation analysis of multiband-structured subband adaptive filter algorithm. IEEE Trans. Signal Process. 64(4), 985–994 (2016)

    Article  MathSciNet  Google Scholar 

  24. Yu, Y., Zhao, H., Lu, L.: Steady-state mean-square analysis of the deficient-length NLMS algorithm with reusing coefficient vector for white input. In: Proceedings of the 35th Chinese Control Conference (CCC), Chengdu, China, pp. 4787-4791, July 27–29 (2016)

  25. Bhotto, M.Z.A., Antoniou, A.: family of shrinkage adaptive filtering algorithms. IEEE Trans. Signal Process. 61(7), 1689–1697 (2013)

    Article  MathSciNet  Google Scholar 

  26. Yu, Y., Zhao, H.: Performance analysis of the deficient length NSAF algorithm and a variable step size method for improving its performance. Digit. Signal Process. 62, 157–167 (2017)

    Article  Google Scholar 

  27. Eweda, E., Zerguine, A.: New insights into the normalization of the least mean fourth algorithm. Signal Image Video Process. 7(2), 255–262 (2013)

    Article  Google Scholar 

  28. Eweda, E., Bershad, N.J., Bermudez, J.C.M.: Stochastic analysis of the least mean fourth algorithm for non-stationary white Gaussian inputs. Signal Image Video Process. 8(1), 133–142 (2014)

    Article  Google Scholar 

  29. Yu, Y., Zhao, H., Chen, B.: Set-membership improved normalized subband adaptive filter algorithms for acoustic echo cancellation. IET Sig Process (2017). https://doi.org/10.1049/iet-spr.2017.0131

Download references

Acknowledgements

This work was partially supported by National Science Foundation of P.R. China (Grant: 61571374, 61271340 and 61433011). The work of Y. Yu was also partially supported by the China Scholarship Council Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiquan Zhao.

Appendix: derivation of (13)

Appendix: derivation of (13)

Postmutiplying (9) by its transpose \({{\varvec{A}}}^{T}(k)\) gives

$$\begin{aligned} {{\varvec{A}}}^{T}(k){{\varvec{A}}}(k)= & {} \mathbf{I}_L -2\sum _{i=0}^{N-1} {\frac{{\varvec{u}}_{L\mathrm{opt},i} (k)\left[ \begin{array}{ll} {{\varvec{u}}_i^T (k)}&{} {\mathbf{0}_{1\times (L-M)} } \\ \end{array} \right] }{\left\| {{\varvec{u}}_i (k)} \right\| ^{2}}} \nonumber \\&+\,\mu ^{2}\sum _{i=0}^{N-1} {\frac{{\varvec{u}}_{L\mathrm{opt},i} (k){\varvec{u}}_{L\mathrm{opt},i}^T (k)}{\left\| {{\varvec{u}}_i (k)} \right\| ^{2}}} . \end{aligned}$$
(34)

To obtain (34), we employ the fact that different subband input signals are mutually orthogonal, i.e., \({\varvec{u}}_i^T (k){\varvec{u}}_j (k)\approx 0,i\ne j\), called the diagonal assumption, which has been used in the derivation of the INSAF algorithm [13]. Taking the expectation of (34) and using the assumption (A.3), we get

$$\begin{aligned} \begin{array}{c} E\left\{ {{{\varvec{A}}}^{T}(k){{\varvec{A}}}(k)} \right\} =\mathbf{I}_L +\mu ^{2}\mathop {\sum }\limits _{i=0}^{N-1} {\frac{E\left\{ {{\varvec{u}}_{L\mathrm{opt},i} (k){\varvec{u}}_{L\mathrm{opt},i}^T (k)} \right\} }{E\left\{ {\left\| {{\varvec{u}}_i (k)} \right\| ^{2}} \right\} }} \\ -\,2\mathop {\sum }\limits _{i=0}^{N-1} \frac{E\left\{ {{\varvec{u}}_{L\mathrm{opt},i} (k)\left[ \begin{array}{ll} {{\varvec{u}}_i^T (k)}&{} {\mathbf{0}_{1\times (L-M)} } \\ \end{array} \right] } \right\} }{E\left\{ {\left\| {{\varvec{u}}_i (k)} \right\| ^{2}} \right\} } \\ \end{array}. \end{aligned}$$
(35)

From the assumption (A.4), we obtain

$$\begin{aligned}&E\left\{ {{\varvec{u}}_{L\mathrm{opt},i} (k)\left[ {{\begin{array}{ll} {{\varvec{u}}_i^T (k)}&{} {\mathbf{0}_{1\times (L-M)} } \\ \end{array} }} \right] } \right\} \nonumber \\&\quad =\left[ {{\begin{array}{ll} {\sigma _{u_i }^2 \mathbf{I}_M }&{} {\mathbf{0}_{1\times (L-M)} } \\ {\mathbf{0}_{1\times (L-M)} }&{} {\mathbf{0}_{L-M} }\\ \end{array} }} \right] , \end{aligned}$$
(36)
$$\begin{aligned}&E\left\{ {{\varvec{u}}_{L\mathrm{opt},i} (k){\varvec{u}}_{L\mathrm{opt},i}^T (k)} \right\} =\sigma _{u_i }^2 \mathbf{I}_L . \end{aligned}$$
(37)

Substituting (36) and (37) into (35) and again using the assumption (A.4), (13) is obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhao, H. & Lu, L. Steady-state behavior of the improved normalized subband adaptive filter algorithm and its improvement in under-modeling. SIViP 12, 617–624 (2018). https://doi.org/10.1007/s11760-017-1199-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1199-z

Keywords

Navigation