Abstract
Microarray technology, which can monitor the expression levels of thousands of genes simultaneously, has been widely used in biological experiment. Image processing, as one key step in microarray technology, plays an essential role in microarray analysis. Meanwhile, biological applications require a higher accuracy in each image processing step. However, the low contrast levels of image make it difficult to obtain better processing precision. This paper proposes a fully automatic contrast enhancement (CE) method based on fourth-order moment. Also, a background estimation method is presented to obtain a better microarray image processing result. Comparative results on contrast enhance and gridding revealed that the proposed CE algorithm performs better compared to the adaptive histogram equalization method. Numerous experiments on the Swiss Institute of Bioinformatics (SIB), Joe DeRisi individual (DeRisi), Gene Expression Omnibus (GEO), and Stanford Microarray Database (SMD) data sets also indicate that the proposed CE exerts a tremendous effect on gridding, but has nothing to do with segmentation.










Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Hernández-Cabronero, M., Sanchez, V., Marcellin, M.W., Serra-Sagristà, J.: A distortion metric for the lossy compression of DNA microarray images. In: Data Compression Conference, Snowbird, UT, United States, pp. 171–180 (2013)
Katsigiannis, S., Zacharia, E., Maroulis, D.: MIGS–GPU: microarray image gridding and segmentation on the GPU. IEEE J. Biomed. Health Inform. 21(3), 867–874 (2017)
Nagaraja, J., Manjunath, S.S.: A fully automatic approach for enhancement of microarray images. J. Autom. Control Eng. 1(4), 285–289 (2013)
Rueda, L., Rezaeian, I.: A fully automatic gridding method for cDNA microarray images. BMC Bioinform. 12(113), 1–17 (2011)
Giannakeas, N., Kalatzis, F., Tsipouras, M.G., Fotiadis, D.I.: A generalized methodology for the gridding of microarray images with rectangular or hexagonal grid. SIViP 10(4), 719–728 (2016)
Shao, G.F., Yang, F., Zhang, Q., Zhou, Q.F., Luo, L.K.: Using the maximum between-class variance for automatic gridding of cDNA microarray images. IEEE/ACM Trans. Comput. Biol. Bioinf. 10(1), 181–192 (2013)
Labib, F.E.Z., Fouad, I., Mabrouk, M., Sharawy, A.: An efficient fully automated method for gridding microarray images. Am. J. Biomed. Eng. 2(3), 115–119 (2012)
Harikiran, J., Avinash, B., Lakshmi, P., Kirankumar, R.: Automatic gridding method for microarray images. J. Theor. Appl. Inf. Technol. 65(1), 235–241 (2014)
Maguluri, L.P., Rajapanthula, K., Parvathaneni, N.S.: A comparative analysis of clustering based segmentation algorithms in microarray images. Int. J. Emerg. Sci. Eng. 1(5), 27–32 (2013)
Mouysset, S., Guivarch, R., Noailles, J., Ruiz, D.: Parallel spectral clustering for the segmentation of cDNA microarray images. In: The 6th International Conference on PACBB, Salamanca, Spain, vol. 154, pp. 1–9 (2012)
Harikiran, J., RamaKrishna, D., Phanendra, M.L., Lakshmi, P.V., Kiran, R.: Fuzzy c-means with Bi-dimensional empirical mode decomposition for segmentation of microarray image. Int. J. Comput. Sci. Issues 9(3), 316–321 (2012)
Meher, J.K., Meher, P.K., Dash, G.N.: Preprocessing of microarray by integrated OSR and SDF approach for effective denoising and quantification. In: International Conference on Information and Network Technology, Singapore, pp. 158–163 (2011)
Fouad, I.A., Mabrouk, M.S., Sharawy, A.A.: A fully automated method for noisy cDNA microarray image quantification. Int. J. Comput. Technol. 11(3), 2330–2340 (2013)
Srinivasan, L., Rakvongthai, Y., Oraintara, S.: Microarray image denoising using complex gaussian scale mixtures of complex wavelets. IEEE J. Biomed. Health Inform. 18(4), 1423–1430 (2014)
Zifan, A., Moradi, M.H., Gharibzadeh, S.: Microarray image enhancement by denoising using decimated and undecimated multiwavelet transforms. SIViP 4, 177–185 (2010)
Kakumani, A., Mendhurwar, K.A., Kakumani, R.: Microarray image denoising using independent component analysis. Int. J. Comput. Appl. 1(11), 87–95 (2010)
Saberkari, H., Shamsi, M., Ghavifekr, H.: A shape-independent algorithm for fully-automated gridding of cDNA microarray images. Comput. Electr. Eng. 62, 135–150 (2017)
Kaur, M., Kaur, J., Kaur, J.: Survey of contrast enhancement techniques based on histogram equalization. Int. J. Adv. Comput. Sci. Appl. 2(7), 137–141 (2011)
Kaur, A., Singh, C.: Contrast enhancement for cephalometric images using wavelet-based modified adaptive histogram equalization. Appl. Soft Comput. 51, 180–191 (2017)
Das, D., Mukhopadhyay, S., Praveen, S.R.S.: Multi-scale contrast enhancement of oriented features in 2D images using directional morphology. Opt. Laser Technol. 87, 51–63 (2017)
Shakeri, M., Dezfoulian, M.H., Khotanlou, H.: Image contrast enhancement using fuzzy clustering with adaptive cluster parameter and sub-histogram equalization. Digit. Signal Proc. 62, 224–237 (2017)
Nimkar, S., Varghese, S., Shrivastava, S.: Contrast enhancement and brightness preservation using multi-decomposition histogram equalization. Int. J. Signal Image Process. 4(3), 85–93 (2013)
Kaur, A., Singh, C.: Contrast enhancement for cephalometric images using wavelet-based modified adaptive histogram equalization. Appl. Soft Comput. 51, 180–191 (2017)
Wang, T.N., Li, T.J., Shao, G.F., Wu, S.X.: An improved K-means clustering method for cDNA microarray image segmentation. Genet. Mol. Res. 14(3), 7771–7781 (2015)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant No. 61403318) and the Fundamental Research Funds for the Central Universities of China (Grant No. 20720160085).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, T., Shao, G., Sun, Y. et al. Contrast enhancement for cDNA microarray image based on fourth-order moment. SIViP 12, 1069–1077 (2018). https://doi.org/10.1007/s11760-018-1258-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-018-1258-0