Abstract
Dictionary learning is widely used to track targets in video sequences. However, a target can be lost during the tracking because of rotation, motion, background clutter, and so on. A dictionary learning method has recently been developed to reduce the chances of missing the target. We developed a new approach using support vector dictionary learning with histograms of sparse codes for a particle filter framework. The representation with support vector can help balance the residual between the candidate and the target. The experiments conducted on challenging sequences demonstrate that the proposed method outperforms seven state-of-the-art algorithms in terms of the overlap rate, center error, and accuracy.






Similar content being viewed by others
References
Salti, S., Cavallaro, A., Stefano, L.D.: Adaptive appearance modeling for video tracking: survey and evaluation. IEEE Trans. Image Process. 21(10), 4334–4348 (2012)
Salti, S., Cavallaro, A., Stefano, L.D.: Object tracking: a survey. ACM Comput. Surv. 38(4), 13 (2006)
Zhang, B., Luan, S., Chen, C., Han, J., Wang, W., Perina, A., Shao, L.: Latent constrained correlation filter. IEEE Trans. Image Process. 27(3), 1038–1048 (2018)
Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: IEEE Computer Society on Conference on Computer Vision and Pattern Recognition (06 CVPR), pp. 798–805 (2006)
Nejhum, S.M.S., Ho, J., Yang, M.-H.: Online visual tracking with histograms and articulating block. Comput. Vis. Image Underst. 114(8), 901–914 (2010)
Hu, W., Li, X., Luo, W., Zhang, X., Maybank, S., Zhang, Z.: Single and multiple object tracking using log-Euclidean Riemannian subspace and block-division appearance model. IEEE Trans. Pattern Anal. Mach. Intell. 34(23), 2420–2440 (2012)
Zhang, B., Li, Z., Cao, X., Ye, Q., Chen, C., Shen, L., Perina, A., Ji, R.: Output constraint transfer fo kernelized correlation filter in tracking. IEEE Trans. Syst. Man Cybern. Syst. 47(4), 693–703 (2017)
Cai, S., Zuo, W., Zhang, L., Feng, X., Wang, P.: Support vector guided dictionary learning. In: European Conference on Computer Vision, pp. 624–639. Springer (2014)
Li, X., Hu, W., Shen, C., Dick, A., Zhang, Z., Hengel, A.V.D.: A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. 4(4), 1–58 (2013)
Wu, Y., Lim, J., Yang, M.-H.: Online object tracking: a benchmark. In: IEEE Computer Society on Conference on Computer Vision and Pattern Recognition (13 CVPR), pp. 2411–2418 (2013)
Zhao, Q., Yang, Z., Tao, H.: Differential earth mover’s distance with its applications to visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 32(2), 274–87 (2010)
Tang, F., Brennan, S., Zhao, Q., Tao, H.: Co-tracking using semi-supervised support vector machines. In: IEEE Computer Society on IEEE Conference on Computer Vision and Pattern Recognition (07 CVPR), pp. 1–8 (2007)
Jiang, S., Ning, J., Cai, C., Li, Y.: Robust Struck tracker via color Haar-like feature and selective updating. SIViP 11(6), 1073–1080 (2017)
Ning, J., Zhang, L., Zhang, D., Wu, C.: Robust object tracking using joint color-texture histogram. Int. J. Pattern Recognit. Artif. Intell. 23(7), 1245–1263 (2011)
Ross, D., Lim, J., Lin, R., Yang, M.-H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1), 125–141 (2008)
Lim, H., Morariu, V.I., Camps, O.I., Sznaier, M.: Dynamic appearance modeling for human tracking. In: IEEE Computer Society on Conference on Computer Vision and Pattern Recognition (12 CVPR), pp. 751–757 (2006)
Leichter, I., Lindenbau, M., Rivlin, E.: Tracking by affine kernel transformations using color and boundary cues. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 164–171 (2009)
Wang, H., Suter, D., Schindler, K., Shen, C.: Adaptive object tracking based on an effective appearance filter. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1661–1667 (2007)
Yang, J., Yang, M.-H.: Top-down visual saliency via joint CRF and dictionary learning. In: IEEE Computer Society on IEEE Conference on Computer Vision and Pattern Recognition (12 CVPR), pp. 2296–2303 (2012)
Wang, S., Lu, H., Yang, F., Yang, M.-H.: Superpixel tracking. In: IEEE Computer Society on International Conference on Computer Vision (2011 ICCV), pp. 1323–1330 (2011)
Wang, C., Xu, W., Pei, X.F., Zhou, X.Y.: An unsupervised multi-scale segmentation method based on automated parameterization. Arab. J. Geosci. 9(15), 651 (2016)
Yi, O.: Structural sparse coding seeds-active appearance model for object tracking. SIViP 11(6), 1097–1104 (2017)
Zhang, L., Wu, W., Chen, T., Strobel, N., Coaniciu, D.: Robust object tracking using semi-supervised appearance dictionary learning. Pattern Recognit. Lett. 25(1), 17–23 (2015)
Yang, Y., Li, M., Nian, F., Zhao, H., He, Y.: Vision target tracker based on incremental dictionary learning and global and local classification. Abstr. Appl. Anal. (2013). https://doi.org/10.1155/2013/323072
Ren, X., Ramanan, D.: Histograms of sparse codes for object detection. In: IEEE Computer Society on Conference on Computer Vision and Pattern Recognition (13 CVPR), pp. 3246–3253 (2013)
Isard, M., Blake, A.: Condensation-conditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998)
Lv, L., Fan, T.H., Sun, Z., Wang, J., Xu, L.Z.: Object tracking with double-dictionary appearance model. Opt. Eng. 55, 083106 (2016)
Yang, F., Lu, H., Yang, M.-H.: Robust superpixel tracing. IEEE Trans. Signal Process. 23(4), 1639–1651 (2014)
Babenko, B., Yang, M.-H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)
Wang, D., Lu, H.C., Yang, M.-H.: Online object tracking with sparse prototypes. IEEE Trans. Image Process. 22(1), 314–325 (2013)
Xu, J., Lu, H., Yang, M.-H.: Visual tracking via adaptive structural local sparse appearance model. In: IEEE Computer Society on Conference on Computer Vision and Pattern Recognition (12 CVPR), pp. 1822–1829 (2012)
Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: European Conference on Computer Vision (12 ECCV), pp. 864–877 (2012)
He, S., Yang, Q., Lau, R., Wang, J., Yang, M.-H.: Visual tracking via locality sensitive histograms. In: IEEE Computer Society on Conference on Computer Vision and Pattern Recognition (13 CVPR), pp. 2427–2434 (2013)
Oron, S., Bar-Hillel, A., Levi, D., Avidan, S.: Locally orderless tracking. In: IEEE Computer Society on Conference on Computer Vision and Pattern Recognition (12 CVPR), pp. 1940–1947 (2012)
Wang, D., Lu, H., Yang, M.-H.: Least soft-threshold squares tracking. In: IEEE Computer Society on Conference on Computer Vision and Pattern Recognition (13 CVPR), pp. 2371–2378 (2013)
Everingham, M., Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grants 61563036, 61501173, and 61461032 and Natural Science Foundation of Jiangxi Province under Grant No. 20161BAB212037.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lv, L., Chen, Z., Zhang, Z. et al. Object tracking based on support vector dictionary learning. SIViP 12, 1189–1196 (2018). https://doi.org/10.1007/s11760-018-1270-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-018-1270-4