Skip to main content
Log in

A sparsity-based Bayesian approach for hyperspectral unmixing using normal compositional model

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

A new Bayesian-based method is developed for unmixing of hyperspectral images. Endmembers are assumed variable based on the Gaussian distribution. A semi-supervised scenario is considered, and as a practical aspect, the abundance vectors are assumed sparse. We propose the Dirichlet prior to represent the sparsity and derive the corresponding posteriors in Bayesian sense. Numerical results are used to evaluate different methods for both simulated and real data. It is shown that the proposed method achieves a lower error in abundance estimation and image reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Plaza, A., Benediktsson, J.A., Boardman, J., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, J., Marconcini, M., Tilton, J.C., Trianni, G.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113(1), 110–122 (2009)

    Article  Google Scholar 

  2. Somers, B., Delalieux, S., Stuckens, J., Verstraeten, W.W., Coppin, P.: A weighted linear spectral mixture analysis approach to address endmember variability in agricultural production systems. Int. J. Remote Sens. 30(1), 139–147 (2009)

    Article  Google Scholar 

  3. Settle, J.J., Drake, N.A.: Linear mixing and the estimation of ground cover proportions. Int. J. Remote Sens. 14(6), 1159–1177 (1993)

    Article  Google Scholar 

  4. Chang, C.I., Heinz, D.C.: Constrained subpixel target detection for remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 38(3), 1144–1159 (2000)

    Article  Google Scholar 

  5. Vane, G., Green, R., Chrien, T., Enmark, H., Hansen, E., Porter, W.: The airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 44(2–3), 127–143 (1993)

    Article  Google Scholar 

  6. Keshava, N., Mustard, J.F.: Spectral unmixing. IEEE Signal Proc. Mag. 19(1), 44–57 (2002)

    Article  Google Scholar 

  7. Bateson, C., Asner, G., Wessman, C.: Endmember bundles: a new approach to incorporating endmember variability into spectral mixture analysis. IEEE Trans. Geosci. Remote Sens. 38(2), 1083–1094 (2000)

    Article  Google Scholar 

  8. Zare, A., Ho, K.C.: Endmember variability in hyperspectral analysis. IEEE Signal Proc. Mag. 31(1), 95–104 (2014)

    Article  Google Scholar 

  9. Mianji, F., Zhang, Y.: SVM-based unmixing-to-classification conversion for hyperspectral abundance quantification. IEEE Trans. Geosci. Remote Sens. 49(11), 4318–4327 (2011)

    Article  Google Scholar 

  10. Stein, D.: Application of the normal compositional model to the analysis of hyperspectral imagery. In: Proceedings of Workshop Advances in Techniques for Analysis Remotely Sensed Data, pp. 44–51. Greenbelt, USA (2003)

  11. Du, X., Zare, A., Gader, P., Dranishnikov, D.: Spatial and spectral unmixing using the beta compositional model. IEEE J. Sel. Top. Appl. Earth Obs. 7(6), 1994–2002 (2014)

    Article  Google Scholar 

  12. Eches, O., Dobigeon, N., Mailhes, C., Tourneret, J.Y.: Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery. IEEE Trans. Image Process. 19(6), 1403–1413 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zare, A., Gader, P., Casella, G.: Sampling piecewise convex unmixing and endmember extraction. IEEE Trans. Geosci. Remote Sens. 51(3), 1655–1665 (2013)

    Article  Google Scholar 

  14. Ülkü, I., Töreyin, B.U.: Sparse coding of hyperspectral imagery using online learning. Signal Image Video Proc. 9(4), 959–966 (2015)

    Article  Google Scholar 

  15. Thouvenin, P.A., Dobigeon, N., Tourneret, J.Y.: Hyperspectral unmixing with spectral variability using a perturbed linear mixing model. IEEE Trans. Signal Proc. 64(2), 525–538 (2016)

    Article  MathSciNet  Google Scholar 

  16. Peng, J., Luo, T.: Sparse matrix transform-based linear discriminant analysis for hyperspectral image classification. Signal Image Video Process. 10(4), 761–768 (2016)

    Article  MathSciNet  Google Scholar 

  17. Uezato, T., Murphy, R.J., Melkumyan, A., Chlingaryan, A.: A novel spectral unmixing method incorporating spectral variability within endmember classes. IEEE Trans. Geosci. Remote Sens. 54(5), 2812–2831 (2016)

    Article  Google Scholar 

  18. Eismann, M.T., Stein, D.: Stochastic mixture modeling in hyperspectral data exploitation: theory and applications, Ch 5. In: Chang, C.I. (ed.) Wiley, New York (2007)

  19. Guo, Z., Wittman, T., Osher, S.: L1 unmixing and its application to hyperspectral image enhancement. In: Proceedings of the SPIE,7334, pp. 1-9. Orlando, USA (2009)

  20. Ng, K.W., Tian, G.L., Tang, M.L.: Dirichlet and Related Distributions: Theory, Methods and Applications. Wiley, New York (2011)

    Book  MATH  Google Scholar 

  21. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, New York (2004)

    Book  MATH  Google Scholar 

  22. http://speclab.cr.usgs.gov/spectral-lib.html [Online]. Accessed May 2016

  23. Swayze, G., Clark, R., Sutley, S., Gallagher, A.: Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada. In: Proceedings of the Summaries 3rd Annual JPL Airborne Geosci. Workshop, pp. 47–49 (1992). https://aviris.jpl.nasa.gov/data/free_data.html. Accessed May 2016

  24. Heinz, D., Chang, C.I.: Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 39(3), 529–545 (2001)

    Article  Google Scholar 

  25. Zare, A., Gader, P., Drashnikov, D., Glenn, T.: Beta compositional model for hyperspectral unmixing. In: Proceedings of the 5th Workshop Hyperspectral Image Signal Processing: Evolution Remote Sensing, Gainesville, USA (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Kahaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, F., Kahaei, M.H. A sparsity-based Bayesian approach for hyperspectral unmixing using normal compositional model. SIViP 12, 1361–1367 (2018). https://doi.org/10.1007/s11760-018-1290-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1290-0

Keywords

Navigation