Skip to main content
Log in

Fusion of hyperspectral and panchromatic images with guided filter

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Guided filter has been widely used in image fusion. However, most of the guided filter-based fusion methods generate the spatial detail image by making a compromise between the spatial detail of the panchromatic (PAN) and that of the hyperspectral (HS) intensity component. The intensity component cannot well present the edge and texture features of the HS image. The spectral distortion usually occurs due to the injected redundant spatial detail. To overcome this problem, this study presents a novel HS image fusion method by taking the advantage of the guided filter. The characteristics of the PAN and HS images are simultaneously considered. The guided filter is employed to generate the spatial detail image of each HS image band successively. The generated spatial detail image is further optimized by minimizing the difference between each band of the spatial detail image and its corresponding band of the HS image, with the help of a novel injection gains matrix. Experiments performed on various satellite datasets demonstrate that the superiority of the proposed method in spectral maintenance and spatial quality aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shreyamsha Kumar, B.K.: Image fusion based on pixel significance using cross bilateral filter. Signal Image Video Process. 9(5), 1193–1204 (2015)

    Article  Google Scholar 

  2. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  3. Laben, C., Brower, B.: Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. US Patent 6 011 875, 4 (2000)

  4. Tu, T.M., Su, S.C., Shyu, H.C., Huang, P.S.: A new look at IHS-like image fusion methods. Inf. Fusion 2(3), 177–186 (2001)

    Article  Google Scholar 

  5. Chavez, P.S., Kwarteng, A.Y.A.: Extracting spectral contrast in Landsat thematic mapper image data using selective principal component analysis. Photogramm. Eng. Remote Sens. 55(3), 339–348 (1989)

    Google Scholar 

  6. Aiazzi, B., Baronti, S., Selva, M.: Improving component substitution pansharpening through multivariate regression of MS+Pan data. IEEE Trans. Geosci. Remote Sens. 45(10), 3230–3239 (2007)

    Article  Google Scholar 

  7. Thomas, C., Ranchin, T., Wald, L., Chanussot, J.: Synthesis of multispectral images to high spatial resolution: a critical review of fusion methods based on remote sensing physics. IEEE Trans. Geosci. Remote Sens. 46(5), 1301–1312 (2008)

    Article  Google Scholar 

  8. Aiazzi, B., Alparone, L., Baronti, S., Garzelli, A., Selva, M.: MTF-tailored multiscale fusion of high-resolution MS and pan imagery. Photogramm. Eng. Remote Sens. 72(5), 591–596 (2006)

    Article  Google Scholar 

  9. Vivone, G., Restaino, R., Mura, M.D., Licciardi, G., Chanussot, J.: Contrast and error-based fusion schemes for multispectral image pansharpening. IEEE Trans. Geosci. Remote Sens. Lett. 11(5), 930–934 (2014)

    Article  Google Scholar 

  10. Liu, J.G.: Smoothing filter based intensity modulation: a spectral preserve image fusion technique for improving spatial details. Int. J. Remote Sens. 21(18), 3461–3472 (2000)

    Article  Google Scholar 

  11. Sharma, K.K., Sharma, M.: Image fusion based on image decomposition using self-fractional Fourier functions. Signal Image Video Process. 8(7), 1335–1344 (2014)

    Article  Google Scholar 

  12. Ghassemian, H.: A review of remote sensing image fusion methods. Inf. Fusion 32, 75–89 (2016)

    Article  Google Scholar 

  13. Licciardi, G., Khan, M.M., Chanussot, J., Montanvert, A., Condat, L., Jutten, C.: Fusion of hyperspectral and panchromatic images using multiresolution analysis and nonlinear PCA band reduction. EURASIP J. Adv. Signal Process. 1, 1C17 (2012)

    Google Scholar 

  14. Liao, W., Huang, X., Coillie, F., Gautama, S., Pizurica, A., Philips, W., Liu, H., Zhu, T., Shimoni, M., Moser, G., Tuia, D.: Processing of multiresolution thermal hyperspectral and digital color data: outcome of the 2014 IEEE GRSS data fusion contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(6), 2984–2996 (2015)

    Article  Google Scholar 

  15. Li, X.R., Cui, J.T., Zhao, L.Y.: Blind nonlinear hyperspectral unmixing based on constrained kernel nonnegative matrix factorization. Signal Image Video Process. 8(8), 1555–1567 (2014)

    Article  Google Scholar 

  16. Yokoya, N., Yairi, T., Iwasaki, A.: Coupled nonnegative matrix factorization unmixing for hyper-spectral and multispectral data fusion. IEEE Trans. Geosci. Remote Sens. 50(2), 528–537 (2012)

    Article  Google Scholar 

  17. Simoes, M., Dias, J.B., Almeida, L., Chanussot, J.: A convex formulation for hyperspectral image superresolution via subspace-based regularization. IEEE Trans. Geosci. Remote Sens. 53(6), 3373–3388 (2015)

    Article  Google Scholar 

  18. Wei, Q., Dobigeon, N., Tourneret, J.Y.: Fast fusion of multiband images based on solving a Sylvester equation. IEEE Trans. Image Process. 24(11), 4109–4121 (2015)

    Article  MathSciNet  Google Scholar 

  19. Wei, Q., Dias, J.M.B., Dobigeon, N., Tourneret, J.-Y.: Hyperspectral and multispectral image fusion based on a sparse representation. IEEE Trans. Geosci. Remote Sens. 53(7), 3658–3668 (2015)

    Article  Google Scholar 

  20. Amina, J., Muhammad, M.R., Abdul, G.: Guided filter and IHS-based pan-sharpening. IEEE Sens. J. 16(1), 192–194 (2016)

    Article  Google Scholar 

  21. Kishor, P.U., Sharad, J., Manjunath, V.J., Prakash, P.G.: Multiresolution image fusion using edge-preserving filters. J. Appl. Remote Sens. 9(1), 096025 (2015)

    Article  Google Scholar 

  22. Pham, C.C., Jeon, J.W.: Efficient image sharpening and denoising using adaptive guided image filtering. Inst. Eng. Technol. 9(1), 71–79 (2015)

    Google Scholar 

  23. Alparone, L., Wald, L., Chanussot, J., Thomas, C., Gamba, P., Bruce, L.: Comparison of pansharpening algorithms: outcome of the 2006 GRS-S data-fusion contest. IEEE Trans. Geosci. Remote Sens. 45(10), 3012–3021 (2007)

    Article  Google Scholar 

  24. Zhang, L., Zhang, L., Tao, D., Huang, X.: On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 50(3), 879–893 (2012)

    Article  Google Scholar 

  25. Mookambiga, A., Gomathi, V.: Comprehensive review on fusion techniques for spatial information enhancement in hyperspectral imagery. Multidimens. Syst. Signal Process. 27(4), 863–889 (2016)

    Article  MathSciNet  Google Scholar 

  26. Wald, L., Ranchin, T., Mangolini, M.: Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 63(6), 691–699 (1997)

    Google Scholar 

Download references

Acknowledgements

This work was supported by 111 project (No. B08038), National Defense Pre-research Foundation, SRF for ROCS, SEM (JY0600090102), NSFC (No. 61372069), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Xiao, S. & Qu, J. Fusion of hyperspectral and panchromatic images with guided filter. SIViP 12, 1369–1376 (2018). https://doi.org/10.1007/s11760-018-1291-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1291-z

Keywords