Skip to main content
Log in

A new method for detecting texture defects based on modified local binary pattern

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The modified local binary pattern is a method that can produce high-precision features for detection and diagnosis of texture images; in this paper, a method is proposed to detect the texture defects based on this algorithm. The proposed method includes two main phases. The first phase is based on clustering technique to fabric normal texture modeling, and the second phase is a threshold to decide about the fabric defects selection. The total dataset in this research contains 596 texture images from different databases including Isfahan textile dataset, UHK dataset, products and TILDA dataset. The fabric defects are generated because of pressure cracks and has effects, woof defects, warp defects and spool slacking. Finally, a noticeable detection rate about 91.86% with a higher rate of 92.02% sensitivity is achieved for the total given dataset. All of the reported results from tests are achieved by applying the proposed method on the explained dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Salem, Y.B., Nasri, S.: Automatic recognition of woven fabrics based on texture and using SVM. Signal Image Video Process. 4(4), 429–34 (2010)

    Article  MATH  Google Scholar 

  2. Roberts, W., et al.: PC based real-time defect imaging system for high-speed web inspection. Proceedings of SPIE 1907, 164–176 (1993)

    Article  Google Scholar 

  3. Zhao, Y.J., Yan, Y.H., Song, K.C.: Vision-based automatic detection of steel surface defects in the cold rolling process: considering the influence of industrial liquids and surface textures. Int. J. Adv. Manuf. Technol. 90(5–8), 1665–1678 (2017)

    Article  Google Scholar 

  4. Fateh, M., Kabir, E.: Color reduction in hand-drawn Persian carpet cartoons before discretization using image segmentation and finding edgy regions. J. AI Data Min. 6(1), 47–58 (2018)

    Google Scholar 

  5. Moallem, P., Razmjooy, N.: A multilayer perceptron neural network trained by invasive weed optimization for potato color image segmentation. Trends Appl. Sci. Res. 7(6), 445 (2012)

    Article  Google Scholar 

  6. Moallem, P., Razmjooy, N., Ashourian, M.: Computer vision-based potato defect detection using neural networks and support vector machine. Int. J. Robot. Autom. 28(2), 137–145 (2013)

    Google Scholar 

  7. Moallem, P., Razmjooy, N., Mousavi, B.S.: Robust potato color image segmentation using adaptive fuzzy inference system. Iran. J. Fuzzy Syst. 11(6), 47–65 (2014)

    MathSciNet  Google Scholar 

  8. KumarA, Pang G.: Fabric defect segmentation using multi-channel blob detectors. Opt. Eng. 39(12), 3176–3190 (2000)

    Article  Google Scholar 

  9. Hornik, K.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  MATH  Google Scholar 

  10. Razmjooy, N., Mousavi, B.S., Khalilpour, M., Hosseini, H.: Automatic selection and fusion of color spaces for image thresholding. Signal Image Video Process. 8(4), 603–614 (2014)

    Article  Google Scholar 

  11. Razmjooy, N., Mousavi, B.S., Sargolzaei, P., Soleymani, F.: Image thresholding based on evolutionary algorithms. Int. J. Phys. Sci. 6(31), 7203–7211 (2011)

    Google Scholar 

  12. Latif-Amet, A., et al.: An efficient method for texture defect detection: sub-band domain co-occurrence matrices. Image Vis. Comput. 18, 543–553 (2000)

    Article  Google Scholar 

  13. Boroujeni, H.S., Charkari, N.M.: Robust moving shadow detection with hierarchical mixture of MLP experts. Signal Image Video Process. 8(7), 1291–305 (2014)

    Article  Google Scholar 

  14. Kuo, Chung-Yang Shih, Lee, Jiunn-Yih: Automatic recognition of fabric weave patterns by a fuzzy C-means clustering method. Text. Res. J. 74(2), 107–111 (2004)

    Article  Google Scholar 

  15. Bu, H.-G., et al.: Fabric defect detection based on multiple fractal features and support vector data description. Eng. Appl. Artif. Intell. 22(2), 224–235 (2009)

    Article  Google Scholar 

  16. Chan, C.H., Pang, G.K.H.: Fabric defect detection by Fourier analysis. IEEE Trans. Ind. Appl. 36(5), 1267–1276 (2000)

    Article  Google Scholar 

  17. Jeffrey Kuo, C.F., Shih, C.Y., Huang, C.C., Wen, Y.M.: Image inspection of knitted fabric defects using wavelet packets. Text. Res. J. 86(5), 553–560 (2016)

    Article  Google Scholar 

  18. Kumar, A., Pang, G.K.H.: Defect detection in textured materials using Gabor filters. IEEE Trans. Ind. Appl. 38(2), 425–440 (2002)

    Article  Google Scholar 

  19. Meylani, R., et al.: Texture defect detection using the adaptive two-dimensional lattice filter. Proc. IEEE Intl. Conf. Image Process. 3, 165–168 (1996)

    Article  Google Scholar 

  20. Hajimowlana, S.H. et al.: 1D Autoregressive modeling for defect detection in web inspection systems. In: Proceedings of IEEE MWSCAS, pp. 318–321 (1998)

  21. Ozdemir, S., Ercil, A.: Markov random fields and Karhunen–Loeve transform for defect inspection of textile products. Proc. IEEE Conf. Emerg. Technol. Fact. Autom. 2, 697–703 (1996)

    Google Scholar 

  22. Kuo, C.-F.J., Lee, C.: A back-propagation neural network for recognizing fabric defects. Text. Res. J. 73(2), 147–151 (2003)

    Article  Google Scholar 

  23. Bennamoun, M., Bodnarova, A.: Automatic visual inspection and flaw detection in textile materials: past, present, and future. In: 1998 IEEE International Conference on Systems, Man, and Cybernetics, vol 5, IEEE, pp. 4340–4343 (1998)

  24. Liu, Y., Zeng, L., Huang, Y.: An efficient HOG-ALBP feature for pedestrian detection. Signal Image Video Process. 8(1), 125–134 (2014)

    Article  Google Scholar 

  25. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  26. Textile college. http://etvto.ir/

  27. The University of Hong Kong, Scholar Hub. http://hub.hku.hk/handle/10722/32188

  28. Brodatz Textures. http://www.ux.uis.no/~?tranden/brodatz.html

  29. TILDA Textile Texture Database. https://lmb.informatik.uni-freiburg.de/resources/datasets/tilda.en.html

  30. Razmjooy, N., Mousavi, B.S., Soleymani, F.: A real-time mathematical computer method for potato inspection using machine vision. Comput. Math. Appl. 63(1), 268–279 (2012)

    Article  MATH  Google Scholar 

  31. Razmjooy, N., Ramezani, M.: Training wavelet neural networks using hybrid particle swarm optimization and gravitational search algorithm for system identification. Int. J. Mechatron. Electron. Comput. Technol. 6(21), 2987–2997 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Razmjooy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makaremi, M., Razmjooy, N. & Ramezani, M. A new method for detecting texture defects based on modified local binary pattern. SIViP 12, 1395–1401 (2018). https://doi.org/10.1007/s11760-018-1294-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1294-9

Keywords

Navigation