Skip to main content
Log in

Study of the relative magnitude in the wavelet domain for texture characterization

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Wavelet-based transforms have emerged as efficient directional multiscale schemes able to provide advanced analysis for the textural content of an image. Making use of their statistical dependencies, wavelet coefficients have been recognized as good basis for texture analysis. In this paper, we propose a new feature vector called relative magnitude (RM) which incorporates local statistical dependencies within the neighborhood of magnitude coefficients. Its discriminative power is evaluated on multiclass grayscale texture classification. The generalized Gaussian distribution and the Laplace Model are used to study the statistical behavior of the proposed feature vector. Experiments were conducted on textures from the VisTex, Brodatz, Outex_TC10, UMD, UIUC, and KTH_TIPS databases. Quantitative results demonstrate the efficiency of the RM feature vector for texture discrimination in the wavelet domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ashir, A.M., Eleyan, A.: Facial expression recognition based on image pyramid and single-branch decision tree. Signal Image Video Process 11(6), 1017–1024 (2017)

    Article  Google Scholar 

  2. Choy, S.K., Tong, C.S.: Statistical wavelet subband characterization based on generalized gamma density and its application in texture retrieval. IEEE Trans. Image Process. 19(2), 281–289 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cimpoi, M., Maji, S., Kokkinos, I., Vedaldi, A.: Deep filter banks for texture recognition, description, and segmentation. Int. J. Comput. Vis. 118(1), 65–94 (2016)

    Article  MathSciNet  Google Scholar 

  4. Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized Gaussian density and Kullback–Leibler distance. IEEE Trans. Image Process. 11(2), 146–158 (2002)

    Article  MathSciNet  Google Scholar 

  5. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)

    Article  Google Scholar 

  6. El Hassouni, M., Tafraouti, A., Toumi, H., Lespessailles, E., Jennane, R.: Fractional brownian motion and geodesic rao distance for bone X-ray image characterization. IEEE J. Biomed. Health Inform. (2016). https://doi.org/10.1109/JBHI.2016.2619420

    Google Scholar 

  7. Gajbhar, S.S., Joshi, M.V.: Design of complex adaptive multiresolution directional filter bank and application to pansharpening. SIVP 11(2), 259–266 (2017)

    Google Scholar 

  8. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

  9. Huang, Z., Li, Q., Fang, H., Zhang, T., Sang, N.: Iterative weighted nuclear norm for X-ray cardiovascular angiogram image denoising. Signal Image Video Process 11(8), 1445–1452 (2017)

    Article  Google Scholar 

  10. Lim, W.Q.: The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans. Image Process. 19(5), 1166–1180 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Miller, K.S.: Complex Gaussian processes. Siam Rev. 11(4), 544–567 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nguyen, T.T., Chauris, H.: Uniform discrete curvelet transform. IEEE Trans. Signal Process. 58(7), 3618–3634 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nguyen, T.T., Oraintara, S.: The shiftable complex directional pyramid-part I: theoretical aspects. IEEE Trans. Signal Process. 56(10), 4651–4660 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  15. Oulhaj, H., Hassouni, M.E., Amine, A., Rziza, M., Jennane, R.: Fully anisotropic morlet transform for the study of the trabecular bone texture variations. In: Proceedings of the Symposium on Applied Computing, pp. 164–169. ACM, New York (2017)

  16. Oulhaj, H., Rziza, M., Amine, A., Toumi, H., Lespessailles, E., Hassouni, M.E., Jennane, R.: Anisotropic discrete dual-tree wavelet transform for improved classification of trabecular bone. IEEE Trans. Med. Imaging 36, 2077–2086 (2017). https://doi.org/10.1109/TMI.2017.2708988

    Article  Google Scholar 

  17. Oulhaj, H., Rziza, M., Amine, A., Toumi, H., Lespessailles, E., Jennane, R., El Hassouni, M.: Trabecular bone characterization using circular parametric models. Biomed. Signal Process. Control 33, 411–421 (2017)

    Article  Google Scholar 

  18. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)

    Article  Google Scholar 

  19. Shahdoosti, H.R., Khayat, O.: Image denoising using sparse representation classification and non-subsampled shearlet transform. SIVP 10(6), 1081–1087 (2016)

    MATH  Google Scholar 

  20. Van De Sande, K., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1582–1596 (2010)

    Article  Google Scholar 

  21. Vidakovic, B.: Statistical Modeling by Wavelets, vol. 503. Wiley, London (2009)

    MATH  Google Scholar 

  22. Zhang, L., Zhou, Z., Li, H.: Binary gabor pattern: an efficient and robust descriptor for texture classification. In: 2012 19th IEEE International Conference on Image Processing (ICIP), pp. 81–84. IEEE (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hind Oulhaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oulhaj, H., Jennane, R., Amine, A. et al. Study of the relative magnitude in the wavelet domain for texture characterization. SIViP 12, 1403–1410 (2018). https://doi.org/10.1007/s11760-018-1295-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1295-8

Keywords

Navigation