Skip to main content
Log in

A modified spectral conjugate gradient projection method for signal recovery

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, signal recovery problems are first reformulated as a nonlinear monotone system of equations such that the modified spectral conjugate gradient projection method proposed by Wan et al. can be extended to solve the signal recovery problems. In view of the equations’ analytic properties, an improved projection-based derivative-free algorithm (IPBDF) is developed. Compared with the similar algorithms available in the literature, an advantage of IPBDF is that the search direction is always sufficiently descent as well as being close to the quasi-Newton direction, without requirement of computing the Jacobian matrix. Then, IPBDF is applied into solving a number of test problems for reconstruction of sparse signals and blurred images. Numerical results indicate that the proposed method either can recover signals in less CPU time or can reconstruct the images with higher quality than the other similar ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu, H., Peng, J.: Sparse signal recovery via alternating projection method. Sig. Process. 143, 161–170 (2018)

    Article  Google Scholar 

  2. Ambat, S.K., Hari, K.V.S.: An iterative framework for sparse signal reconstruction algorithms. Sig. Process. 108, 351–364 (2015)

    Article  Google Scholar 

  3. Zhang, H., Dong, Y., Fan, Q.: Wavelet frame based Poisson noise removal and image deblurring. Sig. Process. 137, 363–372 (2017)

    Article  Google Scholar 

  4. Chen C., Tramel E.W., Fowler J.E.: Compressed-sensing recovery of images and video using multihypothesis predictions. In: Proceedings of the 45th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, 2011, pp. 1193–1198

  5. Zhang, J., Xiang, Q., Yin, Y., et al.: Adaptive compressed sensing for wireless image sensor networks. Multimed. Tools Appl. 76(3), 4227–4242 (2017)

    Article  Google Scholar 

  6. Kumar, A.: Deblurring of motion blurred images using histogram of oriented gradients and geometric moments. Sig. Process. Image Commun. 55, 55–65 (2017)

    Article  Google Scholar 

  7. D’Acunto, M., Benassi, A., Moroni, D., et al.: 3D image reconstruction using Radon transform. SIViP 10(1), 1–8 (2016)

    Article  Google Scholar 

  8. Zhang, X.M., Han, Q.L.: Network-based H\(_\infty \) filtering using a logic jumping-like trigger. Automatica 49(5), 1428–1435 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  10. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, L., Zhou, W.D., Chen, G.R., et al.: Sparse signal reconstruction using decomposition algorithm. Knowl.-Based Syst. 54, 172–179 (2013)

    Article  Google Scholar 

  12. Narayanan, S., Sahoo, S.K., Makur, A.: Greedy pursuits assisted basis pursuit for reconstruction of joint-sparse signals. Sig. Process. 142, 485–491 (2018)

    Article  Google Scholar 

  13. Kowalski, M., Torrésani, B.: Sparsity and persistence: mixed norms provide simple signal models with dependent coefficients. SIViP 3(3), 251–264 (2009)

    Article  MATH  Google Scholar 

  14. Ouaddah, A., Boughaci, D.: Harmony search algorithm for image reconstruction from projections. Appl. Soft Comput. 46, 924–935 (2016)

    Article  Google Scholar 

  15. Bahaoui, Z., El Fadili, H., Zenkouar, K., et al.: Exact Zernike and pseudo-Zernike moments image reconstruction based on circular overlapping blocks and Chamfer distance. SIViP 11(1), 1–8 (2017)

    Article  Google Scholar 

  16. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang X., Sabne A., Kisner S., et al.: High performance model based image reconstruction. In: Proceedings of the 21st ACM 2016: SIGPLAN Symposium on Principles and Practice of Parallel Programming, vol. 2. ACM (2016)

  18. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal \(\ell _1\) norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797–829 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hale, E.T., Yin, W., Zhang, Y.: A fixed-point continuation method for \(\ell _1\) regularized minimization with applications to compressed sensing. CAAM TR07-07, Rice University 43, 44 (2007)

  23. Huang, S., Wan, Z.: A new nonmonotone spectral residual method for nonsmooth nonlinear equations. J. Comput. Appl. Math. 313(15), 82–101 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)

    Article  Google Scholar 

  25. Xiao, Y., Zhu, H.: A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing. J. Math. Anal. Appl. 405(1), 310–319 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xiao, Y., Wang, Q., Hu, Q.: Nonsmooth equations based method for \(l_1\) norm problems with applications to compressed sensing. Nonlinear Anal. Theory Methods Appl. 74(11), 3570–3577 (2011)

    Article  MATH  Google Scholar 

  27. Wan, Z., Liu, W.Y., Wang, C.: An improved projection based derivative-free algorithm for solving nonlinear monotone symmetric equations. Pac. J. Optim. 12(3), 603–622 (2016)

    MathSciNet  Google Scholar 

  28. Lajevardi, S.M.: Structural similarity classifier for facial expression recognition. SIViP 8(6), 1103–1110 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Wan.

Additional information

This research is supported by the National Science Foundation of China (Grant No. 71671190).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Z., Guo, J., Liu, J. et al. A modified spectral conjugate gradient projection method for signal recovery. SIViP 12, 1455–1462 (2018). https://doi.org/10.1007/s11760-018-1300-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1300-2

Keywords

Navigation