Skip to main content
Log in

Radar ECCM based on phase-aid distributed compressive sensing

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper proposes an electronic counter countermeasure (ECCM) technique to suppress randomly distributed multiple false targets generated by digital radio frequency memory-based electronic warfare equipment. Firstly, we present the modulation behaviors of deceptive multiple false targets jamming. Afterward, we discuss the ECCM potential of distributed compressive sensing (DCS) which not only could eliminate random distributed jamming signals but also could preserve the target echo. Further, an approach is proposed relying on phase-aided DCS to improve the performance against a special case of jamming signals that fall in the same range cell but with random amplitudes and phases. Finally, the suppression performances are evaluated through simulations illustrating the feasibility and validity of proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Neri, F.: Introduction to Electronic Defense Systems. Scitech Pub Inc., Morganville (2006)

    Google Scholar 

  2. Lu, G., Liao, S., Luo, S., Tang, B.: Cancellation of complicated Drfm range false targets via temporal pulse diversity. Prog. Electromagn. Res. C 16(3), 69–84 (2010)

    Article  Google Scholar 

  3. Lu, G., Tang, B., Gui, G.: Deception ECM signals cancellation processor with joint time-frequency pulse diversity. IEICE Electron. Express 8(19), 1608–1613 (2011)

    Article  Google Scholar 

  4. Farina, A., Gini, F.: Calculation of blanking probability for the sidelobe blanking for two interference statistical models. IEEE Signal Process. Lett. 5(4), 98–100 (1998)

    Article  Google Scholar 

  5. Farina, A., Gini, F.: Interference blanking probabilities for SLB in correlated Gaussian clutter plus noise. IEEE Trans. Signal Process. 48(5), 1481–1485 (2000)

    Article  Google Scholar 

  6. Han, Y., Tran, V.: Recursive Bayesian beamforming with uncertain projected steering vector and strong interferences. SIViP 10(5), 975–982 (2016)

    Article  Google Scholar 

  7. Maio, A.D., Farina, A., Gini, F.: Performance analysis of the sidelobe blanking system for two fluctuating jammer models. IEEE Trans. Aerosp. Electron. Syst. 41(3), 1082–1091 (2005)

    Article  Google Scholar 

  8. Farina, A., Gini, F.: Design of SLB systems in the presence of correlated ground clutter. IEE Proc. Radar Sonar Navig. 147(4), 199–207 (2000)

    Article  Google Scholar 

  9. Gu, H., Ying, X., Pei, W., Luo, S., Li, Y., Gang, L., Tang, B.: Range-velocity synchronous gate-pull radar jamming suppression with instantaneous cross-correlation, In: IEEE CIE International Conference on Radar, pp. 1839–1842 (2012)

  10. Li, L.: Joint parameter estimation and target localization for bistatic MIMO radar system in impulsive noise. SIViP 9(8), 1775–1783 (2015)

    Article  Google Scholar 

  11. Shen, L., Liu, Z., Xu, Y.: Polarimetric ABORT-like adaptive detector in the presence of target steering vector mismatch, In: Radar Conference, pp. 1009–1014 (2017)

  12. Zhao, Y., Ran, Z., Xiong, Y., Tang, B.: ABORT-like detector to combat active deceptive jamming in a network of LFM radars. Chin. J. Aeronaut. 30(4), 1538–1547 (2017)

    Article  Google Scholar 

  13. Li, X.R., Slocumb, B.J., West, P.D.: Tracking in the presence of range deception ECM and clutter by decomposition and fusion. In: Proceedings of SPIE-The International Society for Optical Engineering, pp. 198–210 (1999)

  14. Nouri, M., Mivehchy, M., Sabahi, M.F.: Jammer target discrimination based on local variance of signal histogram in tracking radar and its implementation. SIViP 11(6), 1025–1032 (2017)

    Article  Google Scholar 

  15. Zhao, S., Zhang, L., Zhou, Y., Liu, N.: Signal fusion-based algorithms to discriminate between radar targets and deception jamming in distributed multiple-radar architectures. IEEE Sens. J. 15(11), 6697–6706 (2015)

    Article  Google Scholar 

  16. Feng, D., Xu, L., Pan, X., Wang, X.: Jamming wideband radar using interrupted-sampling repeater. IEEE Trans. Aerosp. Electron. Syst. 53(3), 1341–1354 (2017)

    Article  Google Scholar 

  17. Cands, Emmanuel J.: The restricted isometry property and its implications for compressed sensing. Comptes rendus Mathmatique 346(9), 589–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hadi, M.A., Alshebeili, S., Jamil, K., El-Samie, F.E.A.: Compressive sensing applied to radar systems: an overview. SIViP 9(1), 25–39 (2015)

    Article  Google Scholar 

  19. Ropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Duarte, M.F., Sarvotham, S., Baron, D., Wakin, M.B., Baraniuk, R.G.: Distributed compressed sensing of jointly sparse signals. In: Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, pp. 1537–1541 (2006)

  21. Sha, W.: CS OMP Matlab Toolbox. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou. http://www.isee.zju.edu.cn/weisha/Freecodes/freecodes.html (2017). Accessed 03 Jan 2018

Download references

Acknowledgements

The authors appreciate Dr. Sha Wei for providing Matlab code on the Web site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhao.

Additional information

The work is supported by the China Scholarship Council (Grant No. 201606070016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Gini, F., Greco, M. et al. Radar ECCM based on phase-aid distributed compressive sensing. SIViP 12, 1497–1504 (2018). https://doi.org/10.1007/s11760-018-1305-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1305-x

Keywords

Navigation