Skip to main content
Log in

Fully automatic prostate segmentation in MR images using a new hybrid active contour-based approach

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Precise prostate segmentation in magnetic resonance (MR) images is mostly utilized for prostate volume estimation, which can help in the determination of prostate-specific antigen density. In this paper, a fully automatic method that contains three successful steps to segment the prostate area in MR images is presented. This method includes a preprocessing stage, an automatic initial point generation step and an active contour-based algorithm with an external force known as vector field convolution (VFC). First, both noise and roughness are approximately removed using Sticks filter and morphology smoothing method. Then, an initial point is automatically generated using multilayer perceptron neural network to initiate the segmentation algorithm. Finally, VFC is employed to extract the prostate region. This system was tested on image data sets to detect the prostate boundaries. Results show that the proposed method can reach a DSC value of \({86~\pm ~6\%}\), is faster than existing methods and also more robust as compared to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cancer Facts and Figures. http://www.cancer.org (2017)

  2. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2016. CA Cancer J. Clin. 66(1), 7–30 (2016). https://doi.org/10.3322/caac.21332

    Article  Google Scholar 

  3. Ghose, S., Oliver, A., Marti, R., Llado, X., Vilanova, J.C., Freixenet, J., Mitra, J., Sidib, D., Meriaudeau, F.: A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images. Computer Methods Programs Biomed. 108(1), 262–287 (2012). https://doi.org/10.1016/j.cmpb.2012.04.006

    Article  Google Scholar 

  4. Liu, X., Haider, M.A., Yetik, I.S.: Unsupervised 3D prostate segmentation based on diffusion-weighted imaging MRI using active contour models with a shape prior. J. Electr. Comput. Eng. 2011, 11 (2011). https://doi.org/10.1155/2011/410912

    MathSciNet  MATH  Google Scholar 

  5. Qiu, W., Yuan, J., Ukwatta, E., Tessier, D., Fenster, A.: Rotational-slice-based prostate segmentation using level set with shape constraint for 3D end-firing TRUS guided biopsy. Med. Image Comput. Comput. Assist. Interv. MICCAI 2012, 537–544 (2012). https://doi.org/10.1007/978-3-642-33415-3_66

    Google Scholar 

  6. Qiu, W., Yuan, J., Ukwatta, E., Sun, Y., Rajchl, M., Fenster, A.: Fast globally optimal segmentation of 3d prostate MRI with axial symmetry prior. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 198–205. Springer, Berlin (2013). https://doi.org/10.1118/1.4810968

  7. Yan, P., Cheeseborough, J.C., Chao, K.C.: Automatic shape-based level set segmentation for needle tracking in 3-D TRUS-guided prostate brachytherapy. Ultrasound Med. Biol. 38(9), 1626–1636 (2012). https://doi.org/10.1016/j.ulterasmedbio.2012.02.11

    Article  Google Scholar 

  8. Vincent, G., Guillard, G., Bowes, M.: Fully automatic segmentation of the prostate using active appearance models. In: MICCAI Grand Challenge: Prostate MR Image Segmentation 2012 (2012)

  9. Mahapatra, D.: Graph cut based automatic prostate segmentation using learned semantic information. In: 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI), pp. 1316–1319. IEEE (2013). https://doi.org/10.1109/ISBI.2013.6556774

  10. Tian, Z., Liu, L., Zhang, Z., Fei, B.: Superpixel-based segmentation for 3D prostate MR images. IEEE Trans. Med. Imaging 35(3), 791–801 (2016). https://doi.org/10.1109/TMI.2015.2496296

    Article  Google Scholar 

  11. Egger, J., Bauer, M., Kuhnt, D., Carl, B., Kappus, C., Freisleben, B., Nimsky, C.: Nugget-cut: a segmentation scheme for spherically-and elliptically-shaped 3D objects. In: Pattern Recognition, pp. 373–382 (2010). https://doi.org/10.1007/978-3-642-15986-2_38

  12. Gao, Y., Wang, L., Shao, Y., Shen, D.: Learning distance transform for boundary detection and deformable segmentation in CT prostate images. In: International Workshop on Machine Learning in Medical Imaging, pp. 93–100. Springer (2014). https://doi.org/10.1007/978-3-319-10581-9_12

  13. Padgett, K., Swallen, A., Nelson, A., Pollack, A., Stoyanova, R.: SU-F-J-171: robust atlas based segmentation of the prostate and peripheral zone regions on MRI utilizing multiple MRI system vendors. Med. Phys. 43(6Part11), 3447–3447 (2016). https://doi.org/10.1118/1.4956079

    Article  Google Scholar 

  14. Khurd, P., Grady, L., Gajera, K., Diallo, M., Gall, P., Requardt, M., Kiefer, B., Weiss, C., Kamen, A.: Facilitating 3D spectroscopic imaging through automatic prostate localization in MR images using random Walker segmentation initialized via boosted classifiers. Prostate Cancer Imaging 6963, 47–56 (2011). https://doi.org/10.1007/978-3-642-23944-1_5

    Google Scholar 

  15. Ghose, S., Mitra, J., Oliver, A., Marti, R., Llado, X., Freixenet, J., Vilanova, J.C., Comet, J., Sidib, D., Meriaudeau, F.: A supervised learning framework for automatic prostate segmentation in trans rectal ultrasound images. In: International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 190–200. Springer (2012). https://doi.org/10.1007/978-3-642-33140-4_17

  16. Yu, L., Yang, X., Chen, H., Qin, J., Heng, P.-A.: Volumetric convNets with mixed residual connections for automated prostate segmentation from 3D MR images. In: AAAI 2017, pp. 66–72 (2017)

  17. He, B., Xiao, D., Hu, Q., Jia, F.: Automatic magnetic resonance image prostate segmentation based on adaptive feature learning probability boosting tree initialization and CNN-ASM refinement. IEEE Access (2017). https://doi.org/10.1109/ACCESS.2017.2781278

  18. Milletari, F., Navab, N., Ahmadi, S.-A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016). https://doi.org/10.1109/3DV.2016.79

  19. Xiong, W., Li, A.L., Ong, S.H., Sun, Y.: Automatic 3D prostate MR image segmentation using graph cuts and level sets with shape prior. In: Pacific-Rim Conference on Multimedia, pp. 211–220. Springer (2013). https://doi.org/10.1007/978-3-319-03731-8_20

  20. Martin, S., Troccaz, J., Daanen, V.: Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model. Med. Phys. 37(4), 1579–1590 (2010). https://doi.org/10.1118/1.3315367

    Article  Google Scholar 

  21. Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W.E., Willsky, A.: A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans. Med. Imaging 22(2), 137–154 (2003). https://doi.org/10.1109/TMI.2002.808355

    Article  Google Scholar 

  22. Drozdzal, M., Chartrand, G., Vorontsov, E., Shakeri, M., Di Jorio, L., Tang, A., Romero, A., Bengio, Y., Pal, C., Kadoury, S.: Learning normalized inputs for iterative estimation in medical image segmentation. Med. Image Anal. 44, 1–13 (2018). https://doi.org/10.1016/j.media.2017.11.005

    Article  Google Scholar 

  23. Li, B., Acton, S.T.: Active contour external force using vector field convolution for image segmentation. IEEE Trans. Image Process. 16(8), 2096–2106 (2007). https://doi.org/10.1109/TIP.2007.899601

    Article  MathSciNet  Google Scholar 

  24. Awad, J., Abdel-Galil, T., Salama, M., Tizhoosh, H., Fenster, A., Rizkalla, K., Downey, D.: Prostate’s boundary detection in transrectal ultrasound images using scanning technique. In: Canadian Conference on Electrical and Computer Engineering, 2003. IEEE CCECE 2003, pp. 1199–1202. IEEE (2003). https://doi.org/10.1109/CCECE.2003.1226113

  25. Demuth, H.B., Beale, M.H., De Jess, O., Hagan, M.T.: Neural Network Design, 2nd edn. Martin Hagan, USA (2014)

    Google Scholar 

  26. Yuan, D., Lu, S.: Simulated static electric field (SSEF) snake for deformable models. In: Proceedings of the 16th International Conference on Pattern Recognition, 2002, pp. 83–86. IEEE (2002). https://doi.org/10.1109/ICPR.2002.1044618

  27. Matsumoto, T., Hanawa, T.: A fast algorithm for solving the Poisson equation on a nested grid. Astrophys. J. 583(1), 296 (2003). https://doi.org/10.1086/345338

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Pourmina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimi, A., Pourmina, M.A. & Moin, MS. Fully automatic prostate segmentation in MR images using a new hybrid active contour-based approach. SIViP 12, 1629–1637 (2018). https://doi.org/10.1007/s11760-018-1320-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1320-y

Keywords

Navigation