Skip to main content
Log in

A Bayesian grouplet transform

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In the signal processing literature, wavelet transforms have been widely used for compression, restoration or texture processing. In this sense, grouplet transforms have been proposed to account for the geometrical image regularities. A grouplet transform (basis or frame) is based on an a priori fixed association field that groups image coefficients according to geometrical considerations. In this paper, we propose a method for estimating this association field in a Bayesian way. The resulting association field is therefore adaptive to the processed image content. A hierarchical Bayesian model is proposed and the inference is conducted using a Markov Chain Monte Carlo (MCMC) algorithm. The proposed method is tested on standard images in terms of association field quality and quantitative properties of the obtained wavelet coefficients. Specifically, the proposed method provides coefficients with low correlation level, and for which the highest level of energy is concentrated within the 20% most significant. These promising results confirm the potential of the proposed method for several image processing applications such as compression, denoising or restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  2. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)

    Article  Google Scholar 

  3. Chaux, C., Duval, L., Pesquet, J.-C.: Image analysis using a dual-tree m-band wavelet transform. IEEE Trans. Image Process. 15(8), 2397–2412 (2006)

    Article  MathSciNet  Google Scholar 

  4. Li, B., Yang, R., Jiang, H.: Remote-sensing image compression using two-dimensional oriented wavelet transform. IEEE Trans. Geosci. Remote Sens. 49(1), 236–250 (2011)

    Article  Google Scholar 

  5. Cheng, J., Liu, H., Liu, T., Wang, F., Li, H.: Remote sensing image fusion via wavelet transform and sparse representation. J. Photogramm. Remote Sens. 104, 158–173 (2015)

    Article  Google Scholar 

  6. Hostalkova, E., Vysata, O., Prochazka, A.: Multi-dimensional biomedical image de-noising using Haar transform. In: 2007 15th International Conference on Digital Signal Processing, pp. 175–178 (2007)

  7. Chaari, L., Pesquet, J.-C., Benazza-Benyahia, A., Ciuciu, P.: A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging. Med. Image Anal. 15(2), 185–201 (2011)

    Article  Google Scholar 

  8. Jerhotova, E., Svihlik, J., Prochazka, A.: Biomedical image volumes denoising via the wavelet transform. In: Gargiulo G.D., McEwan, A. (eds.) Applied Biomedical Engineering, IntechOpen, Rijeka, Ch. 19 (2011)

  9. Li, H., Wang, L.: Palmprint recognition using dual-tree complex wavelet transform and compressed sensing. In: International Conference on Measurement, Information and Control, Vol. 2, pp. 563–567 (2012)

  10. Hou, Y., Zhang, Y.: Effective hyperspectral image block compressed sensing using three-dimensional wavelet transform. In: IEEE Geoscience and Remote Sensing Symposium, Quebec, Canada, pp. 2973 – 2976 (2014)

  11. Chang, C.-L., Girod, B.: Direction-adaptive discrete wavelet transform for image compression. IEEE Trans. Image Process. 16(5), 1289–1302 (2007)

    Article  MathSciNet  Google Scholar 

  12. Kaaniche, M., Benazza-Benyahia, A., Pesquet, J. C., Pesquet-Popescu, B.: Lifting schemes for joint coding of stereoscopic pairs of satellite images. In: European Signal Processing Conference, Poznan, Poland, pp. 980 – 984 (2007)

  13. Kaaniche, M., Pesquet-Popescu, B., Benazza-Benyahia, A., Pesquet, J.-C.: Adaptive lifting scheme with sparse criteria for image coding. EURASIP J. Adv. Signal Process. 2012(1), 10 (2012)

    Article  MATH  Google Scholar 

  14. Do, M., Vetterli, M.: Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models. IEEE Trans. Multimedia. 4(4), 517–527 (2002)

    Article  Google Scholar 

  15. Peyré, G.: Texture synthesis with grouplets. IEEE Trans Pattern Anal Mach Intell. 32(4), 733–746 (2004)

    Article  Google Scholar 

  16. Candès, E., Donoho, D.: New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004)

    Article  MATH  Google Scholar 

  17. Banham, M.R., Katsaggelos, A.K.: Spatially adaptive wavelet-based multiscale image restoration. IEEE Trans. Image Process. 5(4), 619–634 (1996)

    Article  Google Scholar 

  18. Mallat, S.: Geometrical grouplets. Appl. Comput. Harm. Anal. 26(2), 161–180 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Field, D.J., Hayes, A., Hess, R.: Contour integration by the human visual system: Evidence for a local association field. Vis. Res. 22(2), 173–193 (1993)

    Article  Google Scholar 

  20. Wei, D., Li, Y.: Reconstruction of multidimensional bandlimited signals from multichannel samples in the linear canonical transform domain. IET Signal Process. 8(6), 647–657 (2014)

    Article  Google Scholar 

  21. Wei, D., Li, Y.-M.: Generalized sampling expansions with multiple sampling rates for lowpass and bandpass signals in the fractional Fourier transform domain. IEEE Trans. Signal Process. 64(18), 4861–4874 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peyr, G.: Texture synthesis with grouplets. IEEE Trans. Pattern Anal. Mach. Intell. 32, 733–746 (2009)

    Article  Google Scholar 

  23. Jingwen, Y., Zhenguo, Y., Tingting, X., Huimin, Z.: An algorithm for tight frame grouplet to compute association fields, in: Z.Yao, K. Xiangwei, D. T. (Eds.), Image and Graphics, Springer International Publishing, Cham, pp. 187–196 (2017)

  24. Huerta, G.: Multivariate bayes wavelet shrinkage and applications. J. Appl. Stat. 32(5), 529–542 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chaari, L., Tourneret, J.-Y., Chaux, C., Batatia, H.: A Hamiltonian Monte Carlo method for non-smooth energy sampling. IEEE Trans. Signal Process. 64(21), 5585–5594 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Robert, C., Castella, G.: Monte Carlo Statistical Methods. Springer, New York (2004)

    Book  Google Scholar 

  27. Starck, J.-L., Candes, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670–684 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The dual-tree complex wavelet transform. IEEE Signal Process Maga. 22(6), 123–151 (2005)

    Article  Google Scholar 

  29. Candès, E.J., Donoho, D.L.: Recovering edges in ill-posed inverse problems: optimality of curvelet frames. Ann. Stat. 30(3), 784–842 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Caiy, J.F., Jiz, H., Liuy, C., Shenz, Z.: High-quality curvelet-based motion deblurring from an image pair. In: IEEE Conference on Computer Vision and Pattern Recognition pp. 1566–1573 (2009)

  31. Chaux, C., Combettes, P., Pesquet, J.-C., Wajs, V.R.: A variational formulation for frame-based inverse problems. Inverse Probl. 23(4), 1495–1518 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chaari, L., Pesquet, J.-C., Tourneret, J.-Y., Ciuciu, P., Benazza-Benyahia, A.: A hierarchical Bayesian model for frame representation. IEEE Trans. Signal Process. 18(11), 5560–5571 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi Chaari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaari, L. A Bayesian grouplet transform. SIViP 13, 871–878 (2019). https://doi.org/10.1007/s11760-019-01423-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01423-6

Keywords