Skip to main content
Log in

Magnetic resonance and computed tomography image fusion using saliency map and cross bilateral filter

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

An image fusion technique is suggested for magnetic resonance and computed tomography source imaging using saliency map and cross bilateral filter. Since human anatomy consists of many complicated structures, clear demarcated visibility is essential for physicians to deeply analyze the suspicious areas. The source snapshots are disintegrated into various base members and detailed member segments which are melded and consolidated to acquire the resultant fused image. The simulations are performed on variety of images obtained from standard Harvard image database. The proposed technique is able to preserve boundaries (of soft tissues and bones) in the fused image. The fused image obtained using proposed technique is compared with existing techniques using state-of-the-art objective and fusion metrics. The quantitative analysis suggests that the proposed scheme mostly outperforms state-of-the-art schemes in terms of edge, saliency and structural information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Polo, A., Cattani, F., Vavassori, A., Origgi, D., Villa, G., Marsiglia, H., Bellomi, M., Tosi, G., De Cobelli, O., Orecchia, R.: MR and CT image fusion for postimplant analysis in permanent prostate seed implants. Int. J. Radiat. Oncol. Biol. Phys. 60(5), 1572–9 (2004)

    Article  Google Scholar 

  2. Barra, V., Boire, J.Y.: A general framework for the fusion of anatomical and functional medical images. NeuroImage 13(3), 410–24 (2001)

    Article  Google Scholar 

  3. Kavalcova, L., Skaba, R., Kyncl, M., Rouskova, B., Prochazka, A.: The diagnostic value of MRI fistulogram and MRI distal colostogram in patients with anorectal malformations. J. Pediatr. Surg. 48(8), 1806–1809 (2013)

    Article  Google Scholar 

  4. Langari, B., Vaseghi, S., Prochazka, A., Vaziri, B., Aria, F.T.: Edge-guided image gap interpolation using multi-scale transformation. IEEE Trans. Image Process. 25(9), 4394–4405 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Qu, G., Zhang, D., Yan, P.: Medical image fusion by wavelet transform modulus maxima. Opt. Express 9(4), 184–90 (2001)

    Article  Google Scholar 

  6. Hill, P.R., Canagarajah, C.N., Bull, D.R.: Image fusion using complex wavelets. In: British Machine Vision Conference, vol. 2, pp. 1–10 (2002)

  7. Jameel, A., Ghafoor, A., Riaz, M.M.: Improved guided image fusion for magnetic resonance and computed tomography imaging. Sci. World J. 2014, 1–7 (2014)

    Article  Google Scholar 

  8. Naidu, V.P.: Discrete cosine transform-based image fusion. Def. Sci. J. 60(1), 48 (2010)

    Article  MathSciNet  Google Scholar 

  9. Fattal, R., Agrawala, M., Rusinkiewicz, S.: Multiscale shape and detail enhancement from multi-light image collections. ACM Trans. Gr. 26(3), 51 (2007)

    Article  Google Scholar 

  10. Shah, P., Srikanth, T.V., Merchant, S.N., Desai, U.B.: Multimodal image/video fusion rule using generalized pixel significance based on statistical properties of the neighborhood. Signal Image Video Process. 8(4), 723–38 (2014)

    Article  Google Scholar 

  11. Xu, Z.: Medical image fusion using multi-level local extrema. Inf. Fusion 1(19), 38–48 (2014)

    Article  Google Scholar 

  12. Shen, R., Cheng, I., Basu, A.: Cross-scale coefficient selection for volumetric medical image fusion. IEEE Trans. Biomed. Eng. 60(4), 1069–79 (2013)

    Article  Google Scholar 

  13. Gambhir, D., Manchanda, M.: Waveatom transform-based multimodal medical image fusion. Signal Image Video Process. 13(3), 321–329 (2019)

    Article  Google Scholar 

  14. Bhatnagar, G., Wu, Q.J., Liu, Z.: Human visual system inspired multi-modal medical image fusion framework. Expert Syst. Appl. 40(5), 1708–20 (2013)

    Article  Google Scholar 

  15. Yang, Y., Park, D.S., Huang, S., Rao, N.: Medical image fusion via an effective wavelet-based approach. EURASIP J. Adv. Signal Process. 2010(1), 579341 (2010)

    Article  Google Scholar 

  16. Ramlal, S.D., Sachdeva, J., Ahuja, C.K., Khandelwal, N.: Multimodal medical image fusion using non-subsampled shearlet transform and pulse coupled neural network incorporated with morphological gradient. Signal Image Video Process. 12(8), 1479–1487 (2018)

    Article  Google Scholar 

  17. Wang, L., Li, B., Tian, L.F.: Multi-modal medical image fusion using the inter-scale and intra-scale dependencies between image shift-invariant shearlet coefficients. Inf. Fusion 1(19), 20–8 (2014)

    Article  Google Scholar 

  18. Zhan, K., Xie, Y., Wang, H., Min, Y.: Fast filtering image fusion. J. Electron. Imaging 26(6), 063004 (2017)

    Article  Google Scholar 

  19. Bavirisetti, D.P., Kollu, V., Gang, X., Dhuli, R.: Fusion of MRI and CT images using guided image filter and image statistics. Int. J. Imaging Syst. Technol. 27(3), 227–37 (2017)

    Article  Google Scholar 

  20. Wang, N., Ma, Y., Zhan, K., Yuan, M.: Multimodal medical image fusion framework based on simplified PCNN in non subsampled contourlet transform domain. J. Multimed. 8(3), 270–277 (2013)

    Article  Google Scholar 

  21. Li, S., Kang, X., Hu, J.: Image fusion with guided filtering. IEEE Trans. Image Process. 22(7), 2864–75 (2013)

    Article  Google Scholar 

  22. Zhang, Y., Bai, X., Wang, T.: Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure. Inf. Fusion 1(35), 81–101 (2017)

    Google Scholar 

  23. Zhang, Y., Wei, W., Yuan, Y.: Multi-focus image fusion with alternating guided filtering. Signal Image Video Process. 1–9 (2018). https://doi.org/10.1007/s11760-018-1402-x

  24. Kumar, B.S.: Image fusion based on pixel significance using cross bilateral filter. Signal Image Video Process. 9(5), 1193–204 (2015)

    Article  Google Scholar 

  25. Piella G, Heijmans H.: A new quality metric for image fusion. In: 2003 International Conference on Image Processing, 2003. ICIP 2003. Proceedings, vol. 3, pp. III–173. IEEE, 14 Sept 2003

  26. Petrovic V, Xydeas C.: Objective image fusion performance characterisation. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol. 2, pp. 1866–1871. IEEE, 17 Oct 2005

  27. Harvard image database. https://www.med.harvard.edu. Accessed 29 Nov 2017

Download references

Acknowledgements

The authors would like to thank Dr. Nighat Parveen (Intensive Care Unit, Radiology branch, Fauji Foundation Hospital Health Facility) and Syed Sohaib Ali (COMSATS University, Islamabad) for their beneficial dialogue in analyzing the outcomes of fusion techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Ghafoor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ch, M.M.I., Riaz, M.M., Iltaf, N. et al. Magnetic resonance and computed tomography image fusion using saliency map and cross bilateral filter. SIViP 13, 1157–1164 (2019). https://doi.org/10.1007/s11760-019-01459-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01459-8

Keywords

Navigation