Skip to main content
Log in

ECG arrhythmia classification using artificial intelligence and nonlinear and nonstationary decomposition

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

ECG signals reflect all the electrical activities of the heart. Consequently, it plays a key role in the diagnosis of the cardiac disorder and arrhythmia detection. Based on tiny alterations in the amplitude, duration and morphology of the ECG, computer-aided diagnosis has become a recognized approach to classifying the heartbeats of different types of arrhythmia. In this study, a classification approach was developed based on the non-linearity and nonstationary decomposition methods due to the nature of the ECG signal. Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) was used to obtain intrinsic mode functions (IMFs). Established on those IMFs, four parameters have been computed to construct the feature vector. Average power, coefficient of dispersion, sample entropy and singular values have been calculated as parameters from the first six IMFs. Then, ANN has been adopted to apply the feature vector using them and classify five different arrhythmia heartbeats downloaded from Physionet in the MIT–BIH database. To evaluate the performance of the proposed method and compare it with previous algorithms, confusion matrix, sensitivity (SEN), specificity (SPE), accuracy (ACC) and ROC have been used. It has been found that performance from the CEEMDAN and ANN is better than all existing methods, where the SEN is 99.7%, SPE is 99.9%, ACC is 99.9%, and ROC is 01.0%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mendis, B.N.P.P.S.: Global Atlas on Cardiovascular Disease Prevention and Control. World Health Organization, Geneva (2011)

    Google Scholar 

  2. Al-Naser, M., Soderstrom, U.: Reconstruction of occluded facial images using asymmetrical principal component analysis. Integr. Comput. Aided Eng. 19, 273–283 (2012)

    Article  Google Scholar 

  3. Duda, P.H.R., Stork, D. (eds.): Pattern Classification. Wiley, New York (2001)

    MATH  Google Scholar 

  4. Martis, R.J., Chakraborty, C., Ray, A.K.: A two-stage mechanism for registration and classification of ECG using Gaussian mixture model. Pattern Recogn. 42, 2979–2988 (2009)

    Article  Google Scholar 

  5. Khazaee, A., Ebrahimzadeh, A.: Classification of electrocardiogram signals with support vector machines and genetic algorithms using power spectral features. Biomed. Signal Process. Control 5, 252–263 (2010)

    Article  Google Scholar 

  6. Alajlan, N., Bazi, Y., Melgani, F., Malek, S., Bencherif, M.A.: Detection of premature ventricular contraction arrhythmias in electrocardiogram signals with kernel methods. SIViP 8, 931–942 (2014)

    Article  Google Scholar 

  7. Desai, U., Martis, R.J., Nayak, C.G., Seshikala, G., Sarika, K., Shetty, R.K.: Decision support system for arrhythmia beats using ecg signals with DCT, DWT and EMD methods: a comparative study. J. Mech. Med. Biol. 16, 1640012 (2016)

    Article  Google Scholar 

  8. Martis, R.J., Acharya, U.R., Adeli, H.: Current methods in electrocardiogram characterization. Comput. Biol. Med. 48, 133–149 (2014)

    Article  Google Scholar 

  9. Fathi, A., Faraji-kheirabadi, F.: ECG compression method based on adaptive quantization of main wavelet packet subbands. SIViP 10, 1433–1440 (2016)

    Article  Google Scholar 

  10. Hannun, A.Y., Rajpurkar, P., Haghpanahi, M., Tison, G.H., Bourn, C., Turakhia, M.P., et al.: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 25, 65 (2019)

    Article  Google Scholar 

  11. ShraddhaSingh, S.K.P., Pawar, U., Janghel, R.R.: Classification of ECG arrhythmia using recurrent neural networks. Proc. Comput. Sci. 132, 1290 (2018)

    Article  Google Scholar 

  12. Norden, Z.S., Huang, E., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-H., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. R Soc 454, 903 (1998)

    Article  MathSciNet  Google Scholar 

  13. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1, 1–41 (2009)

    Article  Google Scholar 

  14. Torres, M.E., Colominas, M.A., Schlotthauer, G., Flandrin, P.: IEEE: a complete ensemble empirical mode decomposition with adaptive noise. In: 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 4144–4147 (2011)

  15. Lovie, P.: Coefficient of variation. In: Encyclopedia of Statistics in Behavioral Science, vol. 1, pp. 2. (2005)

  16. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278, H2039–H2049 (2000)

    Article  Google Scholar 

  17. Chang, C.-D., Wang, C.-C., Jiang, B.C.: Singular value decomposition based feature extraction technique for physiological signal analysis. J. Med. Syst. 36, 1769–1777 (2012)

    Article  Google Scholar 

  18. Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, In: Informedness, Markedness and Correlation (2011)

  19. Zaplata, F., Kasal, M.: IEEE. In: SDR Implementation for DCF77 (2013)

  20. Kutlu, Y., Kuntalp, D.: A multi-stage automatic arrhythmia recognition and classification system. Comput. Biol. Med. 41, 37–45 (2011)

    Article  Google Scholar 

  21. Kutlu, Y., Kuntalp, D.: Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients. Comput. Methods Progr. Biomed. 105, 257–267 (2012)

    Article  Google Scholar 

  22. Das, M.K., Ari, S.: ECG beats classification using mixture of features. Int. Sch. Res. Not. 2014, 178436 (2014)

    Google Scholar 

  23. Elhaj, F.A., Salim, N., Harris, A.R., Swee, T.T., Ahmed, T.: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Progr. Biomed. 127, 52–63 (2016)

    Article  Google Scholar 

  24. Rajesh, K.N.V.P.S., Uhuli, R.: Classification of ECG heartbeats using nonlinear decomposition methods and support vector machine. Comput. Biol. Med. 87, 271–284 (2017)

    Article  Google Scholar 

  25. Rajesh, K.N.V.P.S., Dhuli, R.: Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier. Biomed. Signal Process. Control 41, 242–254 (2018)

    Article  Google Scholar 

  26. Martis, R.J., Acharya, U.R., Min, L.C.: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 8, 437–448 (2013)

    Article  Google Scholar 

  27. Martis, R.J., Acharya, U.R., Lim, C.M., Suri, J.S.: Characterization of ECG beats from cardiac arrhythmia using discrete cosine transform in PCA framework. Knowl. Based Syst. 45, 76–82 (2013)

    Article  Google Scholar 

  28. Li, P., Liu, C., Wang, X., Zheng, D., Li, Y., Liu, C.: A low-complexity data-adaptive approach for premature ventricular contraction recognition. SIViP 8, 111–120 (2014)

    Article  Google Scholar 

  29. Hammad, M., Maher, A., Wang, K., Jiang, F., Amrani, M.: Detection of abnormal heart conditions based on characteristics of ECG signals. Measurement 125, 634–644 (2018)

    Article  Google Scholar 

  30. Sahoo, S., Kanungo, B., Behera, S., Sabut, S.: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 108, 55–66 (2017)

    Article  Google Scholar 

  31. Rai, H.M., Chatterjee, K.: A novel adaptive feature extraction for detection of cardiac arrhythmias using hybrid technique MRDWT & MPNN classifier from ECG big data. Big Data Res. 12, 13–22 (2018)

    Article  Google Scholar 

  32. Yang, W., Si, Y., Wang, D., Guo, B.: Automatic recognition of arrhythmia based on principal component analysis network and linear support vector machine. Comput. Biol. Med. 101, 22–32 (2018)

    Article  Google Scholar 

  33. Lobabi-Mirghavami, H., Abdolhossein, F.: A novel grammar-based approach to atrial fibrillation arrhythmia detection for pervasive healthcare environments. J. Comput Secur. 2, 155 (2016)

    Google Scholar 

  34. de Albuquerque, V.H.C., Nunes, T.M., Pereira, D.R., Luz, E.J.D.S., Menotti, D., Papa, J.P., et al.: Robust automated cardiac arrhythmia detection in ECG beat signals. Neural Comput. Appl. 29, 679–693 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This paper is supported by the National Natural Science Foundation of China, China (Grant Number: 61671185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqin Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdalla, F.Y.O., Wu, L., Ullah, H. et al. ECG arrhythmia classification using artificial intelligence and nonlinear and nonstationary decomposition. SIViP 13, 1283–1291 (2019). https://doi.org/10.1007/s11760-019-01479-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01479-4

Keywords

Navigation