Abstract
A lossy compression algorithm for still color images is presented. Based on DCT and using adaptive block scanning, the proposed method utilizes a simple technique to encode efficiently the DCT coefficients. The required image quality is guaranteed by using the bisection method to threshold the DCT coefficients of the YCbCr image gotten from the input RGB image. Four scan orders (zigzag, horizontal, vertical and hilbert) are used as adaptive block scanning to read the DCT coefficients from the retained DCT block coefficients. Following a scan order, an index vector is formed by the length of the zero-run sequence that preceded a nonzero DCT coefficient. The lowest value of the four index vectors maximums determines the best scan. Finally, the nonzero DCT coefficients and the index vector for each block are encoded to form the compressed image. The obtained results faced to those reported in recent methods show clearly that the proposed technique achieves high performances.







Similar content being viewed by others
References
Khalid, S.: Introduction to Data Compression, 4th edn. Elsevier, San Francisco (2006)
Kurita, T., Otsu, N.: A method of block truncation coding for color image compression. IEEE Trans. Commun. 41(9), 1270–1274 (1993)
Feng, Y.S., Nasrabadi, N.M.: Dynamic address-vector quantisation of RGB colour images. IEE Proc. I Commun. Speech Vision 138(4), 225–231 (1991)
Clausen, C., Wechsler, H.: Color image compression using PCA and back propagation learning. Pattern Recognit. 33(9), 1555–1560 (2000)
Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), 18–34 (1992)
Dagher, I.: Highly-compacted DCT coefficients. Signal Image Video Process. 4(3), 303–307 (2010)
Ponomarenko, N., Lukin, V., Egiazarian, K., Astola, J.: DCT based high quality image compression. In: Scandinavian Conference on Image Analysis, pp. 1177–1185. Springer, Berlin (2005)
Ponomarenko, N., Lukin, V., Egiazarian, K., Astola, J.: ADCTC: Advanced DCT-Based Image Coder. In: Proceedings of LNLA, Switzerland (2008)
Xiong, Z., Ramchandran, K., Orchard, M.T., Zhang, Y.Q.: A comparative study of DCT and wavelet-based image coding. IEEE Trans. Circuits Syst. Video Technol. 9(5), 692–695 (1999)
Pearlman, W., Islam, A., Nagaraj, N., Said, A.: Efficient, low complexity image coding with a set partitioning embedded block coder. IEEE Trans. Circuits Syst. Video Technol. 14(11), 1219–1235 (2004)
Shoitan, R., Nossair, Z., Isamil, I., Tobal, A.: Hybrid wavelet measurement matrices for improving compressive imaging. Signal Image Video Process. 11(1), 65–72 (2017)
Ohm, J.R., Sullivan, G.J., Schwarz, H., Tan, T.K., Wiegand, T.: Comparison of the coding efficiency of video coding standards including high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 22(12), 1669–1684 (2012)
Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)
Bauermann, I., Steinbach, E.: Further Lossless Compression of JPEG Images. Picture Coding Symposium. In: Proceedings of PCS San Francisco, December 15–17 (2004)
Ponomarenko, N., Egiazarian, K., Lukin, V., Astola, J.: Additional lossless compression of JPEG images. In : Proceedings of 4th Symposium on Image and Signal Processing and Analysis, Zagreb, Croatia, September, 117–120 (2005)
Silveira, T.L.T.D., Oliveira, R.S., Bayer, F.M., Cintra, R.J., Madanayake, A.: Multiplierless 16-point DCT approximation for low-complexity image and video coding. Signal Image Video Process. 11(2), 227–233 (2017)
Douak, F., Benzid, R., Benoudjit, N.: Color image compression algorithm based on the DCT transform combined to an adaptive block scanning. AEU Int. J. Electron. Commun. 65(1), 16–26 (2011)
Messaoudi, A., Srairi, K.: Colour image compression algorithm based on the DCT transform using difference lookup table. Electron. Lett. 52(20), 1685–1686 (2016)
Kodak lossless true color image suite. http://www.r0k.us/graphics/kodak/. Accessed April 2019
USC-SIPI image database. http://sipi.usc.edu/database/database.php?volume=misc. Accessed April 2019
Lim, S., Kim, H., Choi, Y., Yu, S.: Fast intra-mode decision method based on DCT coefficients for h.264/avc. Signal Image Video Process. 9(2), 481–489 (2015)
Yang, C., Zhao, Y., Wang, S.: Low bit-rate cloud-based image coding in the wavelet transform domain. Signal Image and Video Process. 12(8), 1437–1445 (2018)
Benzid, R., Marir, F., Bouguechal, N.E.: Electrocardiogram compression method based on the adaptive wavelet coefficients quantization combined to a modified two-role encoder. IEEE Signal Process. Lett. 14(6), 373–376 (2007)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)
George, M., Thomas, M., Jayadas, C.K.: A methodology for spatial domain image compression based on hops encoding. Procedia Technol. 25, 52–59 (2016)
Gaubatz, M.: MeTriX MuX Visual Quality Assessment Package. http://foulard.ece.cornell.edu/gaubatz/metrix_mux. Accessed April 2019
Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM Matlab source code. https://www4.comp.polyu.edu.hk/~cslzhang/IQA/FSIM/ Files/FeatureSIM.m. Accessed April 2019
Dhara, B.C., Chanda, B.: Color image compression based on block truncation coding using pattern fitting principle. Pattern Recognit. 40(9), 2408–2417 (2007)
Boucetta, A., Melkemi, K.E.: DWT Based-Approach for Color Image Compression Using Genetic Algorithm. In: Elmoataz, A., Mammass, D., Lezoray, O., Nouboud, F., Aboutajdine, D. (eds.) Image and Signal Processing. ICISP 2012. Lecture Notes in Computer Science, vol. 7340. Springer, Berlin, Heidelberg (2012)
Rahul, K., Tiwari, A.K.: Saliency enabled compression in JPEG framework. IET Image Process. 12(7), 1142–1149 (2018). https://doi.org/10.1049/iet-ipr.2017.0554
Aranda, J.J.G., Casquete, M.G., Cueto, M.C., Salmerón, J.N., Vidal, F.G.: Logarithmical hopping encoding: a low computational complexity algorithm for image compression. IET Image Process. 9(8), 643–651 (2015)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Messaoudi, A., Benchabane, F. & Srairi, K. DCT-based color image compression algorithm using adaptive block scanning. SIViP 13, 1441–1449 (2019). https://doi.org/10.1007/s11760-019-01492-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-019-01492-7