Skip to main content
Log in

Detecting changes in cardiovascular interaction during postural stress using directed coherence

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In the study, Granger causality frequency analysis based on directed coherence is utilized to detect and quantify directional interaction among heart rate, systolic blood pressure and respiratory signal during postural stress from supine to standing and from standing to supine. The directional information flow during postural stress from supine to standing is dominant on cardiorespiratory interaction, vasculo-respiratory interaction and cardiovascular interaction. Conversely, the reverse postural stress from standing to supine resulted in a contrary effect on both cardiorespiratory and cardiovascular interactions without significant change in vasculo-respiratory interaction. Based on the power change, we observed that postural stress gets affected by both cardiorespiratory and cardiovascular but not by vasculo-respiratory system. Therefore, the directed coherence power calculated for each interaction helps to identify short-term regulatory mechanism during postural stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABP:

Arterial blood pressure

AR:

Autoregressive

DC:

Directed coherence

ECG:

Electrocardiogram

HF:

High frequency

LF:

Low frequency

MVAR:

Multivariate autoregressive

RESP:

Respiration

PSD:

Power spectral density

A :

Model coefficient matrix

\(\varGamma \) :

Coherence

\(\gamma \) :

Directed coherence power

References

  1. Acharya, U.R., Joseph, K.P., Kannathal, N., Lim, C.M., Suri, J.S.: Heart Rate Variability, Advances in Cardiac Signal Processing, pp. 121–165. Springer, Berlin (2007)

    Book  Google Scholar 

  2. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  MathSciNet  Google Scholar 

  3. Akselrod, S., Gordon, D., Ubel, F.A., Shannon, D.C., Berger, A., Cohen, R.J.: Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213(4504), 220–222 (1981)

    Article  Google Scholar 

  4. Baccala, L., Sameshima, K., Ballester, G., Do Valle, A., Timo-Iaria, C.: Studying the interaction between brain structures via directed coherence and Granger causality. Appl. Signal Process. 5(1), 40 (1998)

    Article  Google Scholar 

  5. Baselli, G., Cerutti, S., Livraghi, M., Meneghini, C., Pagani, M., Rimoldi, O.: Causal relationship between heart rate and arterial blood pressure variability signals. Med. Biol. Eng. Comput. 26(4), 374–378 (1988)

    Article  Google Scholar 

  6. Baselli, G., Porta, A., Rimoldi, O., Pagani, M., Cerutti, S.: Spectral decomposition in multichannel recordings based on multivariate parametric identification. IEEE Trans. Biomed. Eng. 44(11), 1092–1101 (1997)

    Article  Google Scholar 

  7. De Boer, R., Karemaker, J., Strackee, J.: Relationships between short-term blood-pressure fluctuations and heart-rate variability in resting subjects I: a spectral analysis approach. Med. Biol. Eng. Comput. 23(4), 352–358 (1985)

    Article  Google Scholar 

  8. Eftaxias, K., Sanei, S.: Discrimination of task-related eeg signals using diffusion adaptation and s-transform coherency. In: IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1-6. (2014)

  9. Eichler, M.: Causal inference with multiple time series: principles and problems. Philos. Trans. R. Soc. A 371(1997), 20110613 (2013)

    Article  MathSciNet  Google Scholar 

  10. Escudero, J., Sanei, S., Jarchi, D., Abasolo, D., Hornero, R.: Regional coherence evaluation in mild cognitive impairment and alzheimer’s disease based on adaptively extracted magnetoencephalogram rhythms. Physiol. Meas. 32(8), 1163 (2011)

    Article  Google Scholar 

  11. Faes, L., Erla, S., Porta, A., Nollo, G.: A framework for assessing frequency domain causality in physiological time series with instantaneous effects. Philos. Trans. R. Soc. A 371(1997), 20110618 (2013)

    Article  MathSciNet  Google Scholar 

  12. Faes, L., Nollo, G.: Multivariate frequency domain analysis of causal interactions in physiological time series. In: Biomedical Engineering, Trends in Electronics, Communications and Software. InTech (2011)

  13. Faes, L., Nollo, G., Porta, A.: Information domain approach to the investigation of cardio-vascular, cardio-pulmonary, and vasculo-pulmonary causal couplings. Front. Physiol. 2, 80 (2011)

    Article  Google Scholar 

  14. Faes, L., Nollo, G., Porta, A.: Compensated transfer entropy as a tool for reliably estimating information transfer in physiological time series. Entropy 15(1), 198–219 (2013)

    Article  MathSciNet  Google Scholar 

  15. Faes, L., Widesott, L., Del Greco, M., Antolini, R., Nollo, G.: Causal cross-spectral analysis of heart rate and blood pressure variability for describing the impairment of the cardiovascular control in neurally mediated syncope. IEEE Trans. Biomed. Eng. 53(1), 65–73 (2006)

    Article  Google Scholar 

  16. Granger, C.W.: Investigating causal relations by econometric models and cross-spectral methods. Econom.: J. Econom. Soc. 37(3), 424–438 (1969)

    Article  Google Scholar 

  17. Granger, C.W.: Testing for causality: a personal view point. J. Econ. Dyn. Control 2, 329–352 (1980)

    Article  Google Scholar 

  18. Javorka, M., Czippelova, B., Turianikova, Z., Lazarova, Z., Tonhajzerova, I., Faes, L.: Causal analysis of short-term cardiovascular variability: state-dependent contribution of feedback and feedforward mechanisms. Med. Biol. Eng. Comput. 55(2), 179–190 (2017)

    Article  Google Scholar 

  19. Li, B.N., Dong, M.C., Vai, M.I.: On an automatic delineator for arterial blood pressure waveforms. Biomed. Signal Process. Control 5(1), 76–81 (2010)

    Article  Google Scholar 

  20. Manikandan, M.S., Soman, K.: A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomed. Signal Process. Control 7(2), 118–128 (2012)

    Article  Google Scholar 

  21. Marwaha, P., Sunkaria, R.K.: Exploring total cardiac variability in healthy and pathophysiological subjects using improved refined multiscale entropy. Med. Biol. Eng. Comput. 55(2), 191–205 (2017)

    Article  Google Scholar 

  22. Marwan, N., Zou, Y., Wessel, N., Riedl, M., Kurths, J.: Estimating coupling directions in the cardiorespiratory system using recurrence properties. Philos. Trans. R. Soc. A 371(1997), 20110624 (2013)

    Article  MathSciNet  Google Scholar 

  23. Mary, M.H., Singh, D., Deepak, K.: Impact of respiration on cardiovascular coupling using Granger causality analysis in healthy subjects. Biomed. Signal Process. Control 43, 196–203 (2018)

    Article  Google Scholar 

  24. Naidu, V., Reddy, M.: Autoregressive (AR) based power spectral analysis of heart rate time series signal (HRTS signal). In: IEEE Conference on Convergent Technologies for the Asia-Pacific Region TENCON, vol. 4, pp. 1391–1394 (2003)

  25. Nollo, G., Faes, L., Porta, A., Antolini, R., Ravelli, F.: Exploring directionality in spontaneous heart period and systolic pressure variability interactions in humans: implications in the evaluation of baroreflex gain. Am. J. Physiol.-Heart Circ. Physiol. 288(4), H1777–H1785 (2005)

    Article  Google Scholar 

  26. Parati, G., Saul, J.P., Di Rienzo, M., Mancia, G.: Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation: a critical appraisal. Hypertension 25(6), 1276–1286 (1995)

    Article  Google Scholar 

  27. Perlmuter, L.C., Sarda, G., Casavant, V., OHara, K., Hindes, M., Knott, P.T., Mosnaim, A.D.: A review of orthostatic blood pressure regulation and its association with mood and cognition. Clin. Auton. Res. 22(2), 99–107 (2012)

    Article  Google Scholar 

  28. Porta, A., Bassani, T., Bari, V., Tobaldini, E., Takahashi, A.C., Catai, A.M., Montano, N.: Model-based assessment of baroreflex and cardiopulmonary couplings during graded head-up tilt. Comput. Biol. Med. 42(3), 298–305 (2012)

    Article  Google Scholar 

  29. Rangayyan, R.M., Reddy, N.P.: Biomedical signal analysis: a case-study approach. Ann. Biomed. Eng. 30(7), 983–983 (2002)

    Article  Google Scholar 

  30. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 278(6), H2039–H2049 (2000)

    Article  Google Scholar 

  31. Schulz, S., Adochiei, F.C., Edu, I.R., Schroeder, R., Costin, H., Bar, K.J., Voss, A.: Cardiovascular and cardiorespiratory coupling analyses: a review. Philos. Trans. R. Soc. A 371(1997), 20120191 (2013)

    Article  MathSciNet  Google Scholar 

  32. Singh, D., Vinod, K., Saxena, S.C., Deepak, K.K.: Effects of RR segment duration on HRV spectrum estimation. Physiol. Meas. 25(3), 721 (2004)

    Article  Google Scholar 

  33. Steven, M.K.: Modern Spectral Estimation: Theory and Application. Signal Processing Series. American Physiological Society Bethesda, MD (1988)

    MATH  Google Scholar 

  34. Stewart, J.M.: Mechanisms of sympathetic regulation in orthostatic intolerance. J. Appl. Physiol. 113(10), 1659–1668 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Biomedical Instrumentation Laboratory, Department of Instrumentation and Control, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, and to all volunteers who took part in the recording.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Helen Mary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mary, M.C.H., Singh, D. & Deepak, K.K. Detecting changes in cardiovascular interaction during postural stress using directed coherence. SIViP 13, 1521–1528 (2019). https://doi.org/10.1007/s11760-019-01495-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01495-4

Keywords

Navigation