Skip to main content
Log in

Performance comparison of mean-level CFAR detectors in homogeneous and non-homogeneous Weibull clutter for MIMO radars

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we analyze and compare the performance of the CA-CFAR, GO-CFAR and the SO-CFAR detectors in homogeneous and non-homogeneous Weibull background with known shape parameter for Multi-Input Multi-Output radars with widely separated antennas. The non-homogeneity is represented by the presence of interfering targets and a clutter edge in the reference window. We derive closed-form expressions of the probability of false alarm of the three detectors in homogeneous environment. Detector performance in non-homogeneous environment is investigated by means of Monte Carlo simulations. The numerical results show that the best performance is obtained by the SO-CFAR in the case of a high number of interferences, whereas the GO-CFAR has the best false-alarm regulation when the number of cells contaminated by clutter exceeds half the number of reference cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li, J., Stoica, P.: MIMO Radar Signal Processing. Wiley, New Jersey (2009)

    Google Scholar 

  2. Chong, C.Y., et al.: MIMO radar detection in non- Gaussian and heterogeneous clutter. IEEE J. Sel. Top. Signal Process. 4(1), 115–126 (2010)

    Article  MathSciNet  Google Scholar 

  3. Chong, C.Y.: Signal processing for MIMO radars: detection under Gaussian and non-Gaussian environments and application to STAP. Ph.D. thesis, Supelec, France (2011)

  4. Baadeche, M., Soltani, F.: Performance analysis of ordered CFAR detectors for MIMO radars. Digit. Signal Process. 44, 47–57 (2015)

    Article  Google Scholar 

  5. Finn, H.M., Johnson, R.S.: Adaptive detection model with threshold control as a function of spatially sampled clutter-level estimates. RCA Rev. 29, 414–464 (1968)

    Google Scholar 

  6. Gandhi, P.P., Kassam, S.A.: Analysis of CFAR processors in nonhomogeneous background. IEEE Trans. Aerosp. Electron. Syst. 24, 427–445 (1988)

    Article  Google Scholar 

  7. Messali, Z., Soltani, F., Sahmoudi, M.: Robust radar detection of CA, GO and SO CFAR in pearson measurements based on a nonlinear compression procedure for clutter reduction. Signal Image Video Process. 2, 169–176 (2008)

    Article  Google Scholar 

  8. Rohling, H.: Radar CFAR thresholding in clutter and multiple target situations. IEEE Trans. Aerosp. Electron. Syst. 19, 608–621 (1983)

    Article  Google Scholar 

  9. Abdou, L., Soltani, F.: OS-CFAR and CMLD threshold optimization in distributed systems using evolutionary strategies. Signal Image Video Process. 2, 155–167 (2008)

    Article  Google Scholar 

  10. Elias-Fuste, A.R., De Mercado, M.G., Davo, E.R.: Analysis of some modified order statistics CFAR: OSGO and OSSO CFAR. IEEE Trans. Aerosp. Electron. Syst. 26(1), 197–202 (1990)

    Article  Google Scholar 

  11. Tabet, L., Soltani, F.: A generalized switching CFAR processor based on test cell statistics. Signal Image Video Process. 3, 265–273 (2009)

    Article  Google Scholar 

  12. Baadeche, M., Soltani, F.: Performance comparison of some CFAR detectors in homogenous and non-homogenous clutter. In: IEEE International Conference on Signal and Image Processing Applications, Malaysia, pp. 101–105 (2013)

  13. Ritcey, J.A.: Performance analysis of the censored mean level detector. IEEE Trans. Aerosp. Electron. Syst. 22(4), 443–454 (1986)

    Article  Google Scholar 

  14. Ozgunes, I., Gandhi, P.P., Kassam, S.A.: A variably trimmed mean CFAR radar detector. IEEE Trans. Aerosp. Electron. Syst. 28(4), 1002–1014 (1992)

    Article  Google Scholar 

  15. Weinberg, G.V.: Trimmed geometric mean order statistic CFAR detector for Pareto distributed clutter. Signal Image Video Process 12(4), 1–7 (2017)

    Google Scholar 

  16. Sammartino, P., Baker, C., Griffiths, H.: Adaptive MIMO radar system in clutter. In: IEEE Radar Conference, USA, pp. 276–281 (2007)

  17. Akcakaya, M., Nehorai, A.: MIMO radar detection and adaptive design in compound-Gaussian clutter. In: IEEE Radar Conference, USA, pp. 236–241 (2010)

  18. Janatian, N., Modarres-Hashemi, M., Sheikhi, A.: CFAR detectors for MIMO radars. Circuits Syst. Signal Process. 32(3), 1389–1418 (2013)

    Article  Google Scholar 

  19. Yilmaz, K., Baykal, B.: Multiple target localization and data association for frequency-only widely separated MIMO radar. Digit. Signal Process. 25, 51–61 (2014)

    Article  Google Scholar 

  20. Yue, A., Wei, Y., Blum, R. S., et al.: Cramer-Rao lower bound for multitarget localization with noncoherent statistical MIMO radar. In: IEEE Radar Conference (RadarCon), USA, pp. 1497–1502 (2015)

  21. Duofang, C., Baixiao, C., Guodong, Q.: Angle estimation using esprit in MIMO radar. Electron. Lett. 44(12), 770–771 (2008)

    Article  Google Scholar 

  22. Fangqing, W., et al.: Angle estimation for bistatic MIMO radar in the presence of spatial colored noise. Signal Process. 134, 261–267 (2017)

    Article  Google Scholar 

  23. Guolong, C., et al.: Distributed target detection with polarimetric MIMO radar in compound-Gaussian clutter. Digit. Signal Process. 22(3), 430–438 (2012)

    Article  MathSciNet  Google Scholar 

  24. He, Q., et al.: MIMO radar moving target detection in homogeneous clutter. IEEE Trans. Aerosp. Electron. Syst. 46(3), 1290–1301 (2010)

    Article  Google Scholar 

  25. Wang, P., Li, H., Himed, B.: Moving target detection using distributed MIMO radar in clutter with nonhomogeneous power. IEEE Trans. Signal Process. 59(10), 4809–4820 (2011)

    Article  MathSciNet  Google Scholar 

  26. Li, N., et al.: Adaptive detection of moving target with MIMO radar in heterogeneous environments based on Rao and Wald tests. Signal Process. 114, 198–208 (2015)

    Article  Google Scholar 

  27. Musha, T., Sekine, M.: Models of Clutter. Peter Peregrinus Ltd, New York (1993)

    Book  Google Scholar 

  28. Baadeche, M., Soltani, F.: Performance analysis of mean level constant false alarm rate detectors with binary integration in Weibull background. IET Radar Sonar Navig. 9(3), 233–240 (2015)

    Article  Google Scholar 

  29. Meng, X.W.: Performance analysis of ordered-statistic greatest of-constant false alarm rate with binary integration for M-sweeps. IET Radar Sonar Navig. 4(1), 37–48 (2010)

    Article  Google Scholar 

  30. Meng, X.W.: Performance evaluation of OSSO-CFAR with binary integration in Weibull background. J. Electron. 30(1), 83–90 (2013)

    Google Scholar 

  31. Meng, X.W.: Performance analysis of OS-CFAR with binary integration for Weibull background. IEEE Trans. Aerosp. Electron. Syst. 49(2), 1357–1366 (2013)

    Article  Google Scholar 

  32. Zhang, X., et al.: Intelligent CFAR detector for non- homogeneous weibull clutter environment based on skewness. In: IEEE Radar Conference (RadarConf18), USA, pp. 0322–0326 (2018)

  33. Gini, F., Lombardini, F.: Decentralized CFAR detection with binary integration in Weibull clutter. IEEE Trans. Aerosp. Electron. Syst. 33(2), 396–407 (1997)

    Article  Google Scholar 

  34. Gini, F., Lombardini, F., Verrazzani, L.: On distributed signal detection with multiple local free parameters. IEEE Trans. Aerosp. Electron. Syst. 35(4), 1457–1466 (1999)

    Article  Google Scholar 

  35. Gini, F., Lombardini, F., Verrazzani, L.: Robust monparametric multiradar CFAR detection against non-Gaussian spiky clutter. IEE Proc. Radar Sonar Navig. 144(3), 131–140 (1997)

    Article  Google Scholar 

  36. Dong, Y.: Distribution of X-band High Resolution and High Grazing Angle Sea Clutter. Defense Science and Technology Organization, Edinburgh (2006)

    Google Scholar 

  37. Ravid, R., Levanon, N.: Maximum-likelihood CFAR for Weibull background. IEE Proc. 139(3), 256–264 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Soltani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baadeche, M., Soltani, F. & Gini, F. Performance comparison of mean-level CFAR detectors in homogeneous and non-homogeneous Weibull clutter for MIMO radars. SIViP 13, 1677–1684 (2019). https://doi.org/10.1007/s11760-019-01502-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01502-8

Keywords

Navigation