Skip to main content
Log in

Spatial analysis of EEG signals for Parkinson’s disease stage detection

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Diagnosis of Parkinson’s disease (PD) in the early stages is very critical for effective treatments. In this paper, we propose a simple and low-cost biomarker to diagnose PD, using the electroencephalography (EEG) signals. In the proposed method, EEG is used to detect the brain electrical activities in internal regions of brain, e.g., basal ganglia (BG). Based on the high correlation between PD and brain activities in the BG, the proposed method provides a highly accurate PD diagnostic measure. Moreover, we obtain a quantitative measure of the disease severity, using the spectral analysis of extracted brain sources. The proposed method is denoted by Parkinson’s disease stage detection (PDSD). The PDSD includes brain sources separation and localization steps. The accuracy of the method in detection and quantification of PD is evaluated and verified by using information of ten patients and ten healthy people. The results show that there is a significant difference in the number of brain sources within the BG region, as well as their power spectral density, between healthy cases and patients. The accuracy and the cross-validation error of PDSD to detect PD are 95% and 6.25%, respectively. Furthermore, it is shown that the total power of extracted brain sources within the BG region in the \(\alpha \) and \(\beta \) rhythms can be used effectively to determine the severity of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aldea, R.T., Geman, O., Chiuchisan, I., Lazar, A.M.: A comparison between healthy and neurological disorders patients using nonlinear dynamic tools. In: International Conference and Exposition on Electrical and Power Engineering (EPE), pp. 299–303, IEEE, Iasi, Romania (2016)

  2. Jackson, N., Cole, S.R., Voytek, B., Swann, N.C.: Characteristics of waveform shape in Parkinson’s disease detected with scalp electroencephalography. eNeuro 6(3), 1–11 (2019)

    Article  Google Scholar 

  3. Mostile, G., Giuliano, L., Dibilio, V., Luca, A., Cicero, C.E., Sofia, V., Nicoletti, A., Zappia, M.: Complexity of electrocortical activity as potential biomarker in untreated parkinson’s disease. J. Neural Transm. 126(2), 167–172 (2019)

    Article  Google Scholar 

  4. Obukhov, Y.V., Gabova, A., Zaljalova, Z., Illarioshkin, S., Karabanov, A., Korolev, M., Kuznetsova, G., Morozov, A., Nigmatullina, R., Obukhov, K.Y., et al.: Electroencephalograms features of the early stage parkinson’s disease. Pattern Recognit. Image Anal. 24(4), 593–604 (2014)

    Article  Google Scholar 

  5. Chiang, J., Wang, Z.J., McKeown, M.J.: A generalized multivariate autoregressive (GmAR)-based approach for EEG source connectivity analysis. IEEE Trans. Signal Process. 60(1), 453–465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ornelas-Vences, C., Sánchez-Fernández, L.P., Sánchez-Pérez, L.A., Martínez-Hernández, J.M.: Computer model for leg agility quantification and assessment for parkinson’s disease patients. Med. Biol. Eng. Comput. 57, 1–14 (2018)

    Google Scholar 

  7. Oh, S.L., Hagiwara, Y., Raghavendra, U., Yuvaraj, R., Arunkumar, N., Murugappan, M., Acharya, U.R.: A deep learning approach for parkinson’s disease diagnosis from EEG signals. Neural Comput. Appl. (2018). https://doi.org/10.1007/s00521-018-3689-5

    Article  Google Scholar 

  8. Chen, X., Chen, X., Ward, R.K., Wang, Z.J.: A joint multimodal group analysis framework for modeling corticomuscular activity. IEEE Trans. Multimed. 15(5), 1049–1059 (2013)

    Article  Google Scholar 

  9. Turner, R.S., Desmurget, M.: Basal ganglia contributions to motor control: a vigorous tutor. Curr. Opin. Neurobiol. 20(6), 704–716 (2010)

    Article  Google Scholar 

  10. Stocco, A.: A biologically plausible action selection system for cognitive architectures: implications of basal ganglia anatomy for learning and decision-making models. Cogn. Sci. 42(2), 457–490 (2018)

    Article  Google Scholar 

  11. Gatev, P., Wichmann, T.: Interactions between cortical rhythms and spiking activity of single basal ganglia neurons in the normal and parkinsonian state. Cereb. Cortex 19(6), 1330–1344 (2008)

    Article  Google Scholar 

  12. Wichmann, T., DeLong, M.R.: Deep brain stimulation for movement disorders of basal ganglia origin: restoring function or functionality? Neurotherapeutics 13(2), 264–283 (2016)

    Article  Google Scholar 

  13. Griffanti, L., Rolinski, M., Szewczyk-Krolikowski, K., Menke, R.A., Filippini, N., Zamboni, G., Jenkinson, M., Hu, M.T., Mackay, C.E.: Challenges in the reproducibility of clinical studies with resting state fMRI: an example in early parkinson’s disease. Neuroimage 124, 704–713 (2016)

    Article  Google Scholar 

  14. Jatoi, M.A., Kamel, N.: Brain Source Localization Using EEG Signal Analysis. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  15. Yan, H., Wang, J.: Quantification of motor network dynamics in parkinson’s disease by means of landscape and flux theory. PloS One 12(3), e0174364 (2017)

    Article  Google Scholar 

  16. Motamedi-Fakhr, S., Moshrefi-Torbati, M., Hill, M., Hill, C.M., White, P.R.: Signal processing techniques applied to human sleep eeg signals-a review. Biomed. Signal Process. Control 10, 21–33 (2014)

    Article  Google Scholar 

  17. Buciu, I., Kotropoulos, C., Pitas, I.: Comparison of ICA approaches for facial expression recognition. Signal Image Video Process. 3(4), 345 (2009)

    Article  MATH  Google Scholar 

  18. Tharwat, A.: Independent component analysis: an introduction. Appl. Comput. Inform. (2018). https://doi.org/10.1016/j.aci.2018.08.006

    Article  Google Scholar 

  19. Jatoi, M.A., Kamel, N.: Brain source localization using reduced eeg sensors. Signal Image Video Process. 12(8), 1447–1454 (2018)

    Article  Google Scholar 

  20. Hallez, H., Vanrumste, B., Grech, R., Muscat, J., De Clercq, W., Vergult, A., D’Asseler, Y., Camilleri, K.P., Fabri, S.G., Van Huffel, S., et al.: Review on solving the forward problem in eeg source analysis. J. Neuroeng. Rehabilit. 4(1), 1–29 (2007)

    Article  Google Scholar 

  21. Barton, M.J., Robinson, P.A., Kumar, S., Galka, A., Durrant-Whyte, H.F., Guivant, J., Ozaki, T.: Evaluating the performance of kalman-filter-based eeg source localization. IEEE Trans. Biomed. Eng. 56(1), 122–136 (2009)

    Article  Google Scholar 

  22. Rodríguez-Rivera, A., Van Veen, B.D., Wakai, R.T.: Statistical performance analysis of signal variance-based dipole models for meg/eeg source localization and detection. IEEE Trans. Biomed. Eng. 50(2), 137–149 (2003)

    Article  Google Scholar 

  23. Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using focuss: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997)

    Article  Google Scholar 

  24. de Peralta Menendez, R.G., Andino, S.G., Lantz, G., Michel, C.M., Landis, T.: Noninvasive localization of electromagnetic epileptic activity. i. method descriptions and simulations. Brain Topogr. 14(2), 131–137 (2001)

    Article  Google Scholar 

  25. Baillet, S., Garnero, L.: A bayesian approach to introducing anatomo-functional priors in the eeg/meg inverse problem. IEEE Trans. Biomed. Eng. 44(5), 374–385 (1997)

    Article  Google Scholar 

  26. Riera, J., Valdes, P., Fuentes, M., Oharriz, Y.: Explicit Backus and Gilbert EEG Inverse Solution for Spherical Symmetry. Department of Neurophysics, Cuban Neuroscience Center, Havana (2002)

    Google Scholar 

  27. Grech, R., Cassar, T., Muscat, J., Camilleri, K.P., Fabri, S.G., Zervakis, M., Xanthopoulos, P., Sakkalis, V., Vanrumste, B.: Review on solving the inverse problem in EEG source analysis. J. Neuroeng. Rehabilit. 5(1), 25 (2008)

    Article  Google Scholar 

  28. Charvátová, H., Procházka, A., Vaseghi, S., Vyšata, O., Vališ, M.: Gps-based analysis of physical activities using positioning and heart rate cycling data. Signal Image Video Process. 11(2), 251–258 (2017)

    Article  Google Scholar 

  29. Delorme, A., Makeig, S.: Eeglab: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)

    Article  Google Scholar 

  30. Mantini, D., Franciotti, R., Romani, G.L., Pizzella, V.: Improving MEG source localizations: an automated method for complete artifact removal based on independent component analysis. NeuroImage 40(1), 160–173 (2008)

    Article  Google Scholar 

  31. Gutiérrez, D., Nehorai, A., Muravchik, C.H.: Estimating brain conductivities and dipole source signals with EEG arrays. IEEE Trans. Biomed. Eng. 51(12), 2113–2122 (2004)

    Article  Google Scholar 

  32. Nuwer, M.R., Comi, G., Emerson, R., Fuglsang-Frederiksen, A., Guérit, J.-M., Hinrichs, H., Ikeda, A., Luccas, F.J.C., Rappelsburger, P.: IFCN standards for digital recording of clinical EEG. Electroencephalogr. Clin. Neurophysiol. 106(3), 259–261 (1998)

    Article  Google Scholar 

  33. Hoehn, M.M., Yahr, M.D.: Parkinsonism: onset, progression and mortality. Neurology (2001)

  34. Han, C.-X., Wang, J., Yi, G.-S., Che, Y.-Q.: Investigation of EEG abnormalities in the early stage of Parkinson’s disease. Cogn. Neurodyn. 7(4), 351–359 (2013)

    Article  Google Scholar 

  35. Tang, T., Chen, S., Zhao, M., Huang, W., Luo, J.: Very large-scale data classification based on k-means clustering and multi-kernel SVM. Soft Comput. 23(11), 3793–3801 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Farzan Sabahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghsh, E., Sabahi, M.F. & Beheshti, S. Spatial analysis of EEG signals for Parkinson’s disease stage detection. SIViP 14, 397–405 (2020). https://doi.org/10.1007/s11760-019-01564-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01564-8

Keywords

Navigation