Skip to main content
Log in

Weighted aggregation for guided image filtering

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

As a local filter, the guided image filtering (GIF) suffers from halo artifacts. To address this issue, a novel weighted aggregating strategy is proposed in this paper. By introducing the weighted aggregation to GIF, the proposed method called WAGIF can achieve results with sharp edges and avoid/reduce halo artifacts. More specifically, compared to the weighted guided image filtering and the gradient domain guided image filtering, the proposed method can achieve both fine and coarse smoothing results in the flat areas while preserving edges. In addition, the complexity of the proposed approach is O(N) for an image with N pixels. It is demonstrated that the GIF with weighted aggregation performs well in the fields of computational photography and image processing, including single image detail enhancement, tone mapping of high-dynamic-range images, single image haze removal, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ali, S., Daul, C., Galbrun, E., Guillemin, F., Blondel, W.: Anisotropic motion estimation on edge preserving riesz wavelets for robust video mosaicing. Pattern Recognit. 51, 425–442 (2016). https://doi.org/10.1016/j.patcog.2015.09.021

    Article  Google Scholar 

  2. Choi, L.K., You, J., Bovik, A.C.: Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans. Image Process. 24(11), 3888–3901 (2015). https://doi.org/10.1109/TIP.2015.2456502

    Article  MathSciNet  MATH  Google Scholar 

  3. Crow, F.C.: Summed-area tables for texture mapping. SIGGRAPH Comput. Graph. 18(3), 207–212 (1984). https://doi.org/10.1145/964965.808600

    Article  Google Scholar 

  4. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graph. 21(3), 257–266 (2002). https://doi.org/10.1145/566654.566574

    Article  Google Scholar 

  5. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27(3), 1–10 (2008). https://doi.org/10.1145/1360612.1360666

    Article  Google Scholar 

  6. Fattal, R., Agrawala, M., Rusinkiewicz, S.: Multiscale shape and detail enhancement from multi-light image collections. ACM Trans. Graph. (2007). https://doi.org/10.1145/1276377.1276441

    Article  Google Scholar 

  7. Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. ACM Trans. Graph. 21(3), 249–256 (2002). https://doi.org/10.1145/566654.566573

    Article  Google Scholar 

  8. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  9. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013). https://doi.org/10.1109/TPAMI.2012.213

    Article  Google Scholar 

  10. Jiang, X., Yao, H., Liu, D.: Nighttime image enhancement based on image decomposition. Signal Image Video Process. 13(1), 189–197 (2019). https://doi.org/10.1007/s11760-018-1345-2

    Article  Google Scholar 

  11. Kim, B.K., Park, R.H., Chang, S.: Tone mapping with contrast preservation and lightness correction in high dynamic range imaging. Signal Image Video Process. 10(8), 1425–1432 (2016). https://doi.org/10.1007/s11760-016-0942-1

    Article  Google Scholar 

  12. Kou, F., Chen, W., Wen, C., Li, Z.: Gradient domain guided image filtering. IEEE Trans. Image Process. 24(11), 4528–4539 (2015). https://doi.org/10.1109/TIP.2015.2468183

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, X., Yan, Q., Yang, X., Jia, J.: Structure extraction from texture via relative total variation. ACM Trans. Graph. 31(6), 1–10 (2012)

    Google Scholar 

  14. Li, Y., Sharan, L., Adelson, E.H.: Compressing and companding high dynamic range images with subband architectures. ACM Trans. Graph. 24(3), 836–844 (2005). https://doi.org/10.1145/1073204.1073271

    Article  Google Scholar 

  15. Li, Z., Zheng, J., Zhu, Z., Yao, W., Wu, S.: Weighted guided image filtering. IEEE Trans. Image Process. 24(1), 120–129 (2015). https://doi.org/10.1109/TIP.2014.2371234

    Article  MathSciNet  MATH  Google Scholar 

  16. Michailovich, O.V.: An iterative shrinkage approach to total-variation image restoration. IEEE Trans. Image Process. 20(5), 1281–1299 (2011). https://doi.org/10.1109/TIP.2010.2090532

    Article  MathSciNet  MATH  Google Scholar 

  17. Min, D., Choi, S., Lu, J., Ham, B., Sohn, K., Do, M.N.: Fast global image smoothing based on weighted least squares. IEEE Trans. Image Process. 23(12), 5638–5653 (2014). https://doi.org/10.1109/TIP.2014.2366600

    Article  MathSciNet  MATH  Google Scholar 

  18. Mun, J., Jang, Y., Kim, J.: Propagated guided image filtering for edge-preserving smoothing. Signal Image Video Process. 12(6), 1165–1172 (2018). https://doi.org/10.1007/s11760-018-1268-y

    Article  Google Scholar 

  19. Oliveira, M.M.: Domain transform for edge-aware image and video processing. ACM Trans. Graph. 30(4), 1–12 (2011). https://doi.org/10.1145/2010324.1964964

    Article  Google Scholar 

  20. Paras, J., Vipin, T.: An adaptive edge-preserving image denoising technique using patch-based weighted-SVD filtering in wavelet domain. Multimed. Tools Appl. 76(2), 1659–1679 (2017). https://doi.org/10.1007/s11042-015-3154-8

    Article  Google Scholar 

  21. Pham, C.C., Ha, S.V.U., Jeon, J.W.: Adaptive guided image filtering for sharpness enhancement and noise reduction. In: Pacific Rim Conference on Advances in Image and Video Technology, pp. 323–334 (2011)

  22. Porikli, F.: Constant time O(1) bilateral filtering. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008). https://doi.org/10.1109/CVPR.2008.4587843

  23. Ren, W., Liu, S., Ma, L., Xu, Q., Xu, X., Cao, X., Du, J., Yang, M.: Low-light image enhancement via a deep hybrid network. IEEE Trans. Image Process. 28(9), 4364–4375 (2019). https://doi.org/10.1109/TIP.2019.2910412

    Article  MathSciNet  MATH  Google Scholar 

  24. Ren, W., Ma, L., Zhang, J., Pan, J., Cao, X., Liu, W., Yang, M.: Gated fusion network for single image dehazing. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3253–3261 (2018). https://doi.org/10.1109/CVPR.2018.00343

  25. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: IEEE International Conference on Computer Vision, pp. 839–846 (1998). https://doi.org/10.1109/ICCV.1998.710815

  26. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via \(L_0\) gradient minimization. ACM Trans. Graph. 30(6), 1–12 (2011). https://doi.org/10.1145/2070781.2024208

    Article  Google Scholar 

  27. You, X., Du, L., Cheung, Y., Chen, Q.: A blind watermarking scheme using new nontensor product wavelet filter banks. IEEE Trans. Image Process. 19(12), 3271–3284 (2010). https://doi.org/10.1109/TIP.2010.2055570

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61775172 and 61371190. The authors wish to acknowledge the anonymous reviewers’ insightful and inspirational comments that have greatly helped to improve the technical contents and readability of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiqian Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1833 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Wu, S. Weighted aggregation for guided image filtering. SIViP 14, 491–498 (2020). https://doi.org/10.1007/s11760-019-01579-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01579-1

Keywords

Navigation