Abstract
The application of EEG-based emotional states is one of the most vital phases in the context of neural response decoding. Emotional response mostly appears in the presence of visual, auditory, tactile, and gustatory arousals. In our work, we use visual stimuli to evaluate the emotional feedback. One of the best performing methods in emotion estimation applications is the common spatial patterns (CSP). We implement CSP method in addition to the conventional Welch power spectral density-based analysis. Experimental results and topographies on the collected EEG data show that the CSP spatial filtering method implies the relationship between EEG bands, EEG channels, neural efficiency and emotional stimuli types.
Similar content being viewed by others
References
Wu, D., King, J.T., Chuang, C.H., Lin, C.T., Jung, T.P.: Spatial filtering for EEG based regression problems in brain–computer interface (BCI). IEEE Trans. Fuzzy Syst. 26(2), 771 (2018)
Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25, 41 (2008)
Zheng, W.L., Zhu, J.Y., Lu, B.L.: Identifying stable patterns over time for emotion recognition from EEG. IEEE Trans. Affect. Comput. pp 1–1 (2017)
Russell, J.: A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161 (1980)
Lang, P.J., Bradley, M.M., Cuthbert, B.N.: International affective picture system (IAPS): affective ratings of pictures and instruction manual. The Center for Research in Psychophysiology, University of Florida A-8 (2008)
Cuthbert, B.N., Schupp, H.T., Bradley, M.M., Birbaumer, N., Lang, P.J.: Brain potentials in affective picture processing: covariation with autonomic arousal and affective report. Biol. Psychol. 52(2), 95 (2000)
Lang, P.J.: A bio-informational theory of emotional imagery. Psychophysiology 16(6), 495–512 (1979)
Dan-Glauser, E.S., Scherer, K.R.: The Geneva affective picture database (GAPED): a new 730-picture database focusing on valence and normative significance. Behav. Res. Methods 43(2), 468 (2011)
Ahern, G.L., Schwartz, G.E.: Differential lateralization for positive and negative emotion in the human brain: EEG spectral analysis. Neuropsychologia 23(6), 745 (1985)
Ekman, P.: An argument for basic emotions. Cognit. Emot. 6(3–4), 169 (1992)
Ekman, P., Rolls, E., Perrett, D., Ellis, H.: Facial expressions of emotion: an old controversy and new findings. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 335(1273), 63 (1992)
Lang, P.J., Greenwald, M.K., Bradley, M.M., Hamm, A.O.: Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology 30(3), 261 (1993)
Evans, F.J., Cook, M.R., Cohen, H.D., Orne, E., Orne, M.T.: Appetitive and replacement naps: EEG and behavior. Science 197, 687 (1977)
Marchewka, A., Żurawski, Ł., Jednoróg, K., Grabowska, A.: The Nencki Affective Picture System (NAPS): introduction to a novel, standardized, wide-range, high-quality, realistic picture database. Behav. Res. Methods 46(2), 596 (2014)
Bradley, M.M., Lang, P.J.: Measuring emotion: the self assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25(1), 49 (1994)
Goodman, A.M., Katz, J.S., Dretsch, M.N.: Military Affective Picture System (MAPS): a new emotion-based stimuli set for assessing emotional processing in military populations. J. Behav. Ther. Exp. Psychiatry 50, 152 (2016)
Migliore, S., Curcio, G., Porcaro, C., Cottone, C., Simonelli, I., D’aurizio, G., Landi, D., Palmieri, M., Ghazaryan, A., Squitieri, F., Filippi, M., Vernieri, F.: Emotional processing in RRMS patients: dissociation between behavioural and neurophysiological response. Mult. Scler. Relat. Disord. 27, 344 (2019)
Stevens, E.M., Frank, D., Codispoti, M., Kypriotakis, G., Cinciripini, P.M., Claiborne, K., Deweese, M.M., Engelmann, J.M., Green, C.E., Karam-Hage, M., Minnix, J.A., Ng, J., Robinson, J.D., Tyndale, R.F., Vidrine, D.J., Versace, F.: The late positive potentials evoked by cigarette-related and emotional images show no gender differences in smokers. Sci. Rep. 9(1), 3240 (2019)
Jenke, R., Peer, A., Buss, M.: Feature extraction and selection for emotion recognition from EEG. IEEE Trans. Affect. Comput. 5(3), 327 (2014)
Lin, Y.P., Wang, C.H., Jung, T.P., Wu, T.L., Jeng, S.K., Duann, J.R., Chen, J.H.: EEG-based emotion recognition in music listening. IEEE Trans. Biomed. Eng. 57(7), 1798 (2010)
Tibdewal, M.N., Fate, R.R., Mahadevappa, M., Ray, A.K., Malokar, M.: Classification of artifactual EEG signal and detection of multiple eye movement artifact zones using novel time-amplitude algorithm. SIViP 11(2), 333 (2017)
Goshvarpour, A., Abbasi, A., Goshvarpour, A., Daneshvar, S.: Discrimination between different emotional states based on the chaotic behavior of galvanic skin responses. SIViP 11(7), 1347 (2017)
Villar, A.J.: Comparative study of robust methods for motor imagery classification based on CSP and LDA. In: Latin American Congress on biomedical engineering CLAILAB, 2016, pp 126–129 (2017)
Gao, L., Cheng, W., Zhang, J., Wang, J.: EEG classification for motor imagery and resting state in BCI applications using multi-class Adaboost extreme learning machine. Rev. Sci. Instrum. 87(8), 085110 (2016)
Özerdem, M.S., Polat, H.: Emotion recognition based on EEG features in movie clips with channel selection. Brain Inform. 4(4), 241 (2017)
Jin, Y., Mousavi, M., de Sa, V.R.: 2018 Adaptive CSP with subspace alignment for subject to subject transfer in motor imagery brain computer interfaces. In: 6th International Conference on Brain–Computer Interface (BCI), pp 1–4 (2018)
Al-dabag, M.L., Ozkurt, N.: EEG motor movement classification based on cross-correlation with effective channel. Signal Image Video Process. (2018)
EEG channel placement. https://www.biosemi.com/headcap.htm. Accessed 14 Sept 2019
Basar, M.D., Duru, A.D., Ozgor, S., Ozgor, C., Akan, A.: Analysis of reduced EEG channels based on emotional stimulus. In: 26th Signal Processing and Communications Applications Conference (SIU), pp. 1–4 (2018)
Welch, P.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70 (1967)
Koles, Z.: The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. Electroencephalogr. Clin. Neurophysiol. 79(6), 440 (1991)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Basar, M.D., Duru, A.D. & Akan, A. Emotional state detection based on common spatial patterns of EEG. SIViP 14, 473–481 (2020). https://doi.org/10.1007/s11760-019-01580-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-019-01580-8