Abstract
Despite remarkable progress, visual object tracking is still a challenging task as objects usually suffer from significant appearance changes, fast motion, and serious occlusion. In this paper, we propose an anti-occlusion correlation filter-based tracking method (AO-CF) for robust visual tracking. We first propose an occlusion criterion based on continuous response values. Based on the criterion, objects are divided into four categories to adaptively identify the occlusion of objects. Then we propose a new detection condition for detecting proposals. When the occlusion criterion is triggered, the re-detection mechanism is executed and the tracker is commanded to stop, and then the re-detector selects the most reliable proposal to reinitialize the tracker. Experimental results show that our method outperforms other state-of-the-art trackers in terms of both precision rate and success rate on the widely used object tracking benchmark dataset. In addition, AO-CF is able to achieve real-time tracking speed.











Similar content being viewed by others
References
Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2259–2272 (2011)
Ross, D.A., Lim, J., Lin, R., Yang, M.: Incremental learning for robust visual tracking. Int. J. Comput Vis. 77(1), 125–141 (2008)
Bai, B., Li, Y., Fan, J., Price, C., Shen, Q.: Object tracking based on incremental Bi-2DPCA learning with sparse structure. Appl. Opt. 54(10), 2897–2907 (2015)
Babenko, B., Yang, M., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)
Zhang, K., Zhang, L., Yang, M.H.: Fast compressive tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 2002–2015 (2014)
Zitnick, C.L., Dollar, P.: Edge boxes: locating object proposals from edges. In: European Conference on Computer Vision, pp. 391–405 (2014)
Wu, Y., Lim, J., Yang, M.: Online object tracking: a benchmark. In: International Conference on Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)
Wu, Y., Lim, J., Yang, M.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)
Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: International Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010)
Danelljan, M., Khan, F.S., Felsberg, M., van de Weijer, J.: Adaptive color attributes for real-time visual tracking, pp. 1090–1097 (2014)
Galoogahi, H.K., Sim, T., Lucey, S.: Multi-channel correlation filters. In: International Conference Computer Vision, pp. 3072–3079 (2013)
Danelljan, M., Häger, G., Khan, F., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference, pp. 1–5 (2014)
Li, Y., Zhu, J.: A scale adaptive Kernel correlation filter tracker with feature integration. In: European Conference on Computer Vision, pp. 254–265 (2014)
Choi, J., Chang, H.J., Yun, S.: Attentional correlation filter network for adaptive visual tracking. In: International Conference on Computer Vision and Pattern Recognition, pp. 4828–4837 (2017)
Wang, Q., Gao, J., Xing, J.: DCFNet: discriminant correlation filters network for visual tracking. arXiv preprint arXiv:1704.04057 (2017)
Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M.M., Hicks, S.L., Torr, P.H.S.: Struck: structured output tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2096–2109 (2015)
Chen, D., Yuan, Z., Wu, Y., Zhang, G., Zheng, N.: Constructing adaptive complex cells for robust visual tracking. In: IEEE International Conference on Computer Vision, pp. 1113–1120 (2013)
Holzer, S., Llic, S., Navab, N.: Multilayer adaptive linear predictors for real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 105–117 (2013)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking–learning–detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)
Zhang, J., Ma, S., Sclaroff, S.: Meem: robust tracking via multiple experts using entropy minimization. In: European Conference on Computer Vision, pp. 188–203 (2014)
Zhang, B., Li, Z., Cao, X.: Output constraint transfer for kernelized correlation filter in tracking. IEEE Trans. Syst. Man Cybern. 47(4), 693–703 (2017)
Zhang, B., Luan, S., Chen, C.: Latent constrained correlation filter. IEEE Trans. Image Process. 27(3), 1038–1048 (2018)
Zhao, J., Xiao, G., Zhang, X., Bavirisetti, D.: An improved long-term correlation tracking method with occlusion handling. Chin. Opt. Lett. (2019). https://doi.org/10.3788/COL201917.031001
Ma, C., Yang, X., Zhang, C.: Long-term correlation tracking. In: International Conference on Computer Vision and Pattern Recognition, pp. 5388–5396 (2015)
Ning, J., Yang, J., Jiang, S.: Object tracking via dual linear structured SVM and explicit feature map. In: International Conference on Computer Vision and Pattern Recognition, pp. 4266–4274 (2016)
Bertinetto, L., Valmadre, J., Golodetz, S.: Staple: complementary learners for real-time tracking. In: International Conference on Computer Vision and Pattern Recognition, pp. 1401–1409 (2016)
Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: IEEE International Conference on Computer Vision, pp. 2544–2550 (2010)
Kalal, Z., Mikolajczyk, K., Matas, J.: Forward–backward error: automatic detection of tracking failures. In: IEEE International Conference on Pattern Recognition, pp. 2756–2759 (2010)
Acknowledgements
This paper is sponsored by National Program on Key Basic Research Project (2014CB744903), National Natural Science Foundation of China (61973212, 61673270), Shanghai Science and Technology Committee Research Project (17DZ1204304).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, J., Xiao, G., Zhang, X. et al. Anti-occlusion object tracking based on correlation filter. SIViP 14, 753–761 (2020). https://doi.org/10.1007/s11760-019-01601-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-019-01601-6