Skip to main content
Log in

Secure ear biometrics using circular kernel principal component analysis, Chebyshev transform hashing and Bose–Chaudhuri–Hocquenghem error-correcting codes

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Ear biometrics has generated an increased interest in the domain of biometric identification systems due to its robustness and covert acquisition potential. The external structure of the human ear has a bilateral symmetry structure. Here, we analyse ear biometrics based on ear symmetry features. We apply iterative closest point and kernel principal component analysis with circular kernel for feature extraction while using a circular kernel function, combined with empirical mode decomposition into intrinsic mode functions perceptual hashing using and fast Chebyshev transform, and a secure authentication approach that exploits the discrete logarithm problem and Bose–Chaudhuri–Hocquenghem error-correcting codes to generate 128-bit crypto keys. We evaluate the proposed ear biometric cryptosecurity system using our data set of ear images acquired from 103 persons. Our results show that the ear biometric-based authentication achieved an equal error rate of 0.13 and true positive rate TPR of 0.85.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Woodward, J.D., Orlans, N.M., Higgins, P.T.: Biometrics. McGraw-Hill, Berkeley (2002)

    Google Scholar 

  2. Chang, K., Bowyer, K.W., Sarkar, S., Victor, B.: Comparison and combination of ear and face images in appearance-based biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1160–1165 (2003)

    Article  Google Scholar 

  3. Benzaoui, A., Adjabi, I., Boukrouche, A.: Experiments and improvements of ear recognition based on local texture descriptors. Opt. Eng. 56(4), 043109 (2017)

    Article  Google Scholar 

  4. Abaza, A., Ross, A.: Towards understanding the symmetry of human ears: a biometric perspective. In: IEEE Conference on Biometrics: Theory, Applications, and Systems (BTAS), Washington, DC, pp. 1–7 (2010)

  5. Claes, P., Reijniers, J., Shrives, M.D., Snyders, J., Suetens, P., Nielandt, J., De Tre, G., Vandermeulen, D.: An investigation of matching symmetry in human pinnae with possible implications for 3D ear recognition and sound localization. J. Anat. 226(1), 60–72 (2015)

    Article  Google Scholar 

  6. Verma, P., Sandhu, H.K., Verma, K.G., Goyal, S., Sudan, M., Ladgotra, A.: Morphological variations and biometrics of ear: an aid to personal identification. J. Clin. Diagn. Res. 10(5), ZC138–ZC142 (2016)

    Google Scholar 

  7. Al-Ani, M.S., Al-Waisy, A.S.: Multi-view face detection based on kernel principal component analysis and kernel support vector techniques. Int. J. Soft Comput. 2(2), 1–13 (2011)

    Article  Google Scholar 

  8. Yang, Q., Ding X.: Symmetrical PCA in face recognition. In: International Conference on Image Processing, pp. 97–100 (2002)

  9. Yan, P., Bowyer, K.W.: Biometric recognition using three-dimensional ear shape. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1297–1308 (2007)

    Article  Google Scholar 

  10. Benzaoui, A., Hadid, A., Boukrouche, A.: Ear biometric recognition using local texture descriptors. J. Electron. Imaging 23(5), 053008 (2014). https://doi.org/10.1117/1.jei.23.5.053008

    Article  Google Scholar 

  11. Tariq, A., Akram, M.: Personal Identification using ear recognition. TELKOMNIKA 10(2), 321–326 (2012)

    Article  Google Scholar 

  12. Kumar, A., Wu, C.: Automated human identification using ear imaging. Pattern Recogn. 45(3), 956–968 (2012)

    Article  Google Scholar 

  13. Annapurani, K., Sadiq, M.A.K., Malathy, C.: Fusion of shape of the ear and tragus–A unique feature extraction method for ear authentication system. J. Expert Syst. Appl. 42(1), 649–656 (2015)

    Article  Google Scholar 

  14. Mu, Z., Yuan, L., Xu, Z., Xi, D., Qi, S.: Shape and structural feature based ear recognition. In: Advances in Biometric Person Authentication, pp. 663–670. Springer (2004)

  15. Toygar, Ö., Alqaralleh, E., Afaneh, A.: Symmetric ear and profile face fusion for identical twins and non-twins recognition. SIViP 12(6), 1157–1164 (2018)

    Article  Google Scholar 

  16. Abaza, A., Ross, A., Hebert, C., Harrison, M.A.F., Nixon, M.S.: A survey on ear biometrics. ACM Comput. Surv. 45(2), 22 (2013)

    Article  Google Scholar 

  17. Yuan, L., Mu, Z.: Ear recognition based on gabor features and KFDA. Sci. World J., Art. 702076 (2014)

  18. Chang, K., Bowyer, K.W., Sarkar, S., Victor, B.: Comparison and combination of ear and face images in appearance-based biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1160–1165 (2003)

    Article  Google Scholar 

  19. Alqaralleh, E., Toygar, Ö.: Ear recognition based on fusion of ear and tragus under different challenges. Int. J. Pattern Recogn. Artif. Intell. 32(9), art. 1856009 (2018). https://doi.org/10.1142/s0218001418560098

  20. Jamil, N., AlMisreb, A., Halin, A.A.: Illumination-invariant ear authentication. Procedia Comput. Sci. 42(C), 271–278 (2014)

    Article  Google Scholar 

  21. Zhang, B., Mu, Z., Zeng, H., Luo, S.: Robust ear recognition via nonnegative sparse representation of Gabor orientation information. Sci. World J. Art. 131605 (2014)

  22. Emeršič, Ž., Meden, B., Peer, P., Štruc, V.: Evaluation and analysis of ear recognition models: performance, complexity and resource requirements. Neural Comput. Appl., pp. 1–16. Springer, Berlin, Germany (2018). https://doi.org/10.1007/s00521-018-3530-1

  23. Banerjee, S., Chatterjee, A.: Robust multimodal multivariate ear recognition using kernel based simultaneous sparse representation. Eng. Appl. Artif. Intell. 64, 340–351 (2017)

    Article  Google Scholar 

  24. Sforza, C., Grandi, G., Binelli, M., Tommasi, D.G., Rosati, R., Ferrario, V.F.: Age and sex related changes in the normal human ear. Forensic Sci. Int. 100(e1–110), e7 (2009)

    Google Scholar 

  25. Eyiokur, F.I., Yaman, D., Ekenel, H.K.: Domain adaptation for ear recognition using deep convolutional neural networks. IET Biom. 7(3), 199–206 (2018). https://doi.org/10.1049/iet-bmt.2017.0209

    Article  Google Scholar 

  26. Omara, I., Wu, X., Zhang, H., Du, Y., Zuo, W.: Learning pairwise SVM on hierarchical deep features for ear recognition. IET Biom. 7(6), 557–566 (2018). https://doi.org/10.1049/iet-bmt.2017.0087

    Article  Google Scholar 

  27. Alshazly, H., Linse, C., Barth, E., Martinetz, T.: Ensembles of deep learning models and transfer learning for ear recognition. Sensors (Switzerland) (2019). https://doi.org/10.3390/s19194139

    Article  Google Scholar 

  28. Dodge, S., Mounsef, J., Karam, L.: Unconstrained ear recognition using deep neural networks. IET Biom. 7(3), 207–214 (2018)

    Article  Google Scholar 

  29. Hezil, N., Boukrouche, A.: Multimodal biometric recognition using human ear and palmprint. IET Biom. 6(5), 351–359 (2017)

    Article  Google Scholar 

  30. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: 6th ACM Conference Computer and Communications Security, pp. 28–36 (1999)

  31. Damaševičius, R., Maskeliūnas, R., Kazanavičius, E., Woźniak, M.: Combining cryptography with EEG biometrics. Comput. Intell. Neurosci., Article ID 1867548, 1–11 (2018). https://doi.org/10.1155/2018/1867548

  32. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  33. Prakash, S., Jayaraman, U., Gupta, P.: Ear localization from side face images using distance transform and template matching. In: First Workshops on Image Processing Theory, Tools and Applications (2008). https://doi.org/10.1109/ipta.2008.4743786

  34. Isaacs, J.C., Foo, S.Y., Meyer-Baese, A.: Novel kernels and kernel PCA for pattern recognition. In: 2007 International Symposium on Computational Intelligence in Robotics and Automation, Jacksonville, FI, pp. 438–443 (2007)

  35. Boughorbel, S., Tarel, J.P., Fleuret, F., Boujemaa, N.: The GCS kernel for SVM-based image recognition. In: Artificial Neural Networks: Formal Models and Their Applications—ICANN 2005. LNCS, vol. 3697, 595–600. Springer (2005)

  36. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London Series A, 454(1971), 903–995 (1998)

  37. Yang, H., Yin, J., Jiang, M.: Perceptual image hashing using latent low-rank representation and uniform LBP. Appl. Sci. 8, 317 (2018)

    Article  Google Scholar 

  38. Gui, Q., Jin, Z., Xu, W.: Exploring EEG-based biometrics for user identification and authentication. In: IEEE Signal Processing in Medicine and Biology Symposium (SPMB), pp. 1–6 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robertas Damasevicius.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olanrewaju, L., Oyebiyi, O., Misra, S. et al. Secure ear biometrics using circular kernel principal component analysis, Chebyshev transform hashing and Bose–Chaudhuri–Hocquenghem error-correcting codes. SIViP 14, 847–855 (2020). https://doi.org/10.1007/s11760-019-01609-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01609-y

Keywords

Navigation