Skip to main content
Log in

Age-invariant face recognition based on deep features analysis

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Age-invariant face recognition is one of the most crucial computer vision problems, e.g., in passport verification, surveillance systems, and missing individuals identification. The extraction of robust face features is a challenge since the facial characteristics change over age progression. In this paper, an age-invariant face recognition system is proposed, which includes four stages: preprocessing, feature extraction, feature fusion, and classification. Preprocessing stage detects faces using Viola–Jones algorithm and frontal face alignment. Feature extraction is achieved using a CNN architecture using VGG-Face model to extract compact face features. Extracted features are fused using the real-time feature-level multi-discriminant correlation analysis, which significantly reduces feature dimensions and results in the most relevant features to age-invariant face recognition. Finally, K-nearest neighbor and support vector machine are investigated for classification. Our experiments are performed on two standard face-aging datasets, namely FGNET and MORPH. Rank-1 recognition accuracy of the proposed system is 81.5% on FGNET and 96.5% on MORPH. Experimental results outperform the current state-of-the-art techniques on same data. These preliminary results show the promise of the proposed system for personal identification despite aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anand, A., Donida Labati, R., Genovese, A., Munoz Ballester, E., Piuri, V., Scotti, F.: Age estimation based on face images and pre-trained convolutional neural networks. In: CISDA. IEEE (2017)

  2. Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recognit. 13(2), 111–122 (1981)

    Article  Google Scholar 

  3. Cawley, G.C.: Leave-one-out cross-validation based model selection criteria for weighted ls-svms. In: International Joint Conference on Neural Networks, 2006. IJCNN’06, pp. 1661–1668. IEEE (2006)

  4. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  5. El Khiyari, H., Wechsler, H.: Face recognition across time lapse using convolutional neural networks. J. Inf. Secur. 7(03), 1028–1037 (2016)

    Google Scholar 

  6. Face, group, G.R.W., et al.: Fg-Net Aging Database (2000)

  7. Gong, D., Li, Z., Lin, D., Liu, J., Tang, X.: Hidden factor analysis for age invariant face recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2872–2879 (2013)

  8. Gong, D., Li, Z., Tao, D., Liu, J., Li, X.: A maximum entropy feature descriptor for age invariant face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5289–5297 (2015)

  9. Haghighat, M., Abdel-Mottaleb, M., Alhalabi, W.: Discriminant correlation analysis: real-time feature level fusion for multimodal biometric recognition. IEEE Trans. Inf. Forensics Secur. 11(9), 1984–1996 (2016)

    Article  Google Scholar 

  10. Jain, A.K., Klare, B., Park, U.: Face matching and retrieval in forensics applications. IEEE Multimed. 19(1), 20 (2012)

    Article  Google Scholar 

  11. Jain, A.K., Li, S.Z.: Handbook of Face Recognition. Springer, New York (2011)

    MATH  Google Scholar 

  12. Jan, F., Usman, I., Agha, S.: Reliable iris localization using hough transform, histogram-bisection, and eccentricity. Signal Process. 93(1), 230–241 (2013)

    Article  Google Scholar 

  13. Lanitis, A., Taylor, C.J., Cootes, T.F.: Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 442–455 (2002)

    Article  Google Scholar 

  14. Li, H., Zou, H., Hu, H.: Modified hidden factor analysis for cross-age face recognition. IEEE Signal Process. Lett. 24(4), 465–469 (2017)

    Article  Google Scholar 

  15. Li, Y., Wang, G., Lin, L., Chang, H.: A deep joint learning approach for age invariant face verification. In: CCF Chinese Conference on Computer Vision, pp. 296–305. Springer, New York, (2015)

  16. Li, Y., Wang, G., Nie, L., Wang, Q., Tan, W.: Distance metric optimization driven convolutional neural network for age invariant face recognition. Pattern Recognit. 75, 51–62 (2018)

    Article  Google Scholar 

  17. Li, Z., Park, U., Jain, A.K.: A discriminative model for age invariant face recognition. IEEE Trans. Inf. Forensics Secur. 6(3), 1028–1037 (2011)

    Article  Google Scholar 

  18. Lindeberg, T.: Scale Invariant Feature Transform (2012)

  19. Ling, H., Soatto, S., Ramanathan, N., Jacobs, D.W.: Face verification across age progression using discriminative methods. IEEE Trans. Inf. Forensics Secur. 5(1), 82–91 (2010)

    Article  Google Scholar 

  20. Liu, C., Wechsler, H.: A shape-and texture-based enhanced fisher classifier for face recognition. IEEE Trans. Image Process. 10(4), 598–608 (2001)

    Article  Google Scholar 

  21. Monwar, M.M., Gavrilova, M.L.: Multimodal biometric system using rank-level fusion approach. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(4), 867–878 (2009)

    Article  Google Scholar 

  22. Nimbarte, M., Bhoyar, K.: Age invariant face recognition using convolutional neural network. Int. J. Electr. Comput. Eng. (IJECE) 8(4), 2126–2138 (2018)

    Article  Google Scholar 

  23. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  24. Park, U., Tong, Y., Jain, A.K.: Age-invariant face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 947–954 (2010)

    Article  Google Scholar 

  25. Parkhi, O.M., Vedaldi, A., Zisserman, A., et al.: Deep face recognition. In: BMVC , vol. 1, p. 6 (2015)

  26. Ricanek, K., Tesafaye, T.: Morph: A longitudinal image database of normal adult age-progression. In: 7th International Conference on Automatic Face and Gesture Recognition, FGR 2006, pp. 341–345. IEEE (2006)

  27. Shakeel, M.S., Lam, K.M.: Deep-feature encoding-based discriminative model for age-invariant face recognition. Pattern Recognit. 93, 442–457 (2019)

    Article  Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Published as a Conference Paper at ICLR 2015 (2014)

  29. Song, F., Tan, X., Chen, S., Zhou, Z.H.: A literature survey on robust and efficient eye localization in real-life scenarios. Pattern Recognit. 46(12), 3157–3173 (2013)

    Article  Google Scholar 

  30. Sun, Q.S., Heng, P.A., Jin, Z., Xia, D.S.: Face recognition based on generalized canonical correlation analysis. In: International Conference on Intelligent Computing, pp. 958–967. Springer, New York (2005)

  31. Sun, Q.S., Liu, Zd, Heng, P.A., Xia, D.S.: A theorem on the generalized canonical projective vectors. Pattern Recognit. 38(3), 449–452 (2005)

    Article  Google Scholar 

  32. Sun, Q.S., Zeng, S.G., Liu, Y., Heng, P.A., Xia, D.S.: A new method of feature fusion and its application in image recognition. Pattern Recognit. 38(12), 2437–2448 (2005)

    Article  Google Scholar 

  33. Sun, Y., Liang, D., Wang, X., Tang, X.: Deepid3: Face Recognition with Very Deep Neural Networks. arXiv preprint arXiv:1502.00873 (2015)

  34. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2013)

    MATH  Google Scholar 

  35. Vedaldi, A., Lenc, K.: Matconvnet: Convolutional neural networks for matlab. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 689–692. (2015)

  36. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  37. Xu, C., Liu, Q., Ye, M.: Age invariant face recognition and retrieval by coupled auto-encoder networks. Neurocomputing 222, 62–71 (2017)

    Article  Google Scholar 

  38. Xu, X., Mu, Z.: Feature fusion method based on KCCA for ear and profile face based multimodal recognition. In: 2007 IEEE International Conference on Automation and Logistics, pp. 620–623. IEEE (2007)

  39. Yan, C., Lang, C., Wang, T., Du, X., Zhang, C.: Age estimation based on convolutional neural network. In: Pacific Rim Conference on Multimedia, pp. 211–220 (2014)

  40. Yang, J., Yang, Jy, Zhang, D., Lu, Jf: Feature fusion: parallel strategy vs. serial strategy. Pattern Recognit. 36(6), 1369–1381 (2003)

    Article  Google Scholar 

  41. Zhou, H., Lam, K.M.: Age-invariant face recognition based on identity inference from appearance age. Pattern Recognit. 76, 191–202 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Elnakib.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moustafa, A.A., Elnakib, A. & Areed, N.F.F. Age-invariant face recognition based on deep features analysis. SIViP 14, 1027–1034 (2020). https://doi.org/10.1007/s11760-020-01635-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01635-1

Keywords

Navigation