Skip to main content

Advertisement

Log in

InFun: a community detection method to detect overlapping gene communities in biological network

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Community detection is an important task in social network analysis, and communities in network usually appear interrelated feature. Meanwhile, there exist many communities in biological network and module network inference is an effective and established method to analyze the gene expression data. Hence, exploring and analyzing the interaction between modules or independent modules will improve our understanding of cancer mechanism. To this end, we proposed a novel method, InFun, for reconstructing different module networks. Our method applies two-ways clustering which contains Bayesian approach and overlapping community method to detect gene communities via combing gene omics data and prior information between proteins. On the basis of the cancer genome Atlas breast cancer and colon cancer data, we observe that InFun can recognize module networks which are significantly more enriched in the known pathways than another method like Lemon-tree. These gene communities can serve as bio-markers to estimate the survival time of patients which is critical for cancer therapy. Discovering single function communities can predict breast cancer subtype by using different feature sets, and multiple function communities can communicate with other community which can be used to explain cancer processes. InFun brings new sight for understanding cancer mechanism and novel technique for clustering genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lu, X., Qian, X., Li, X., Miao, Q., Peng, S.: DMCM: a data-adaptive mutation clustering method to identify cancer-related mutation clusters. Bioinformatics 35, 389–3979 (2018)

    Article  Google Scholar 

  2. Tao, H., Min, J., Kong, X., Cai, Y.D.: Dysfunctions associated with methylation, MicroRNA expression and gene expression in lung cancer. PLoS ONE 7(8), e43441 (2012)

    Article  Google Scholar 

  3. Zhang, S., Zhao, H., Ng, M.K.: Functional module analysis for gene coexpression networks with network integration. IEEE/ACM Trans. Comput. Biol. Bioinf. 12(5), 1146 (2015)

    Article  Google Scholar 

  4. Luo, Y., Yang, K., Tang, Q., Zhang, J., Li, P., Qiu, S.: An optimal data service providing framework in cloud radio access network. Eurasip J. Wirel. Commun. Netw. 2016(1), 23 (2016)

    Article  Google Scholar 

  5. Yang, L., Zhou, Y., Zheng, Y.: Annotating the literature with disease ontology. Chin. J. Electron. 26(6), 1261 (2017)

    Article  Google Scholar 

  6. Odena, A.: Semi-supervised learning with generative adversarial networks. Comput. Mater. Cont. 55(2), 243 (2018)

    Google Scholar 

  7. Liu, B., Li, C.C., Yan, K.: DeepSVM-fold: Protein fold recognition by combining support vector machines and pairwise sequence similarity score generated by deep learning networks. Brief. Bioinf. (2019). https://doi.org/10.1093/bib/bbz098

    Article  Google Scholar 

  8. Hudson, T.J., Anderson, W., Artez, A., Barker, A.D., Bell, C., Bernabã, R.R., Bhan, M.K., Calvo, F., Eerola, I., Gerhard, D.S.: International network of cancer genome projects. Nature 464(7291), 993 (2010)

    Article  Google Scholar 

  9. Chen, Y., Xu, W., Zuo, J., Kai, Y.: The fire recognition algorithm using dynamic feature fusion and IV-SVM classifier. Clust. Comput. 22, 7665–7675 (2018)

    Article  Google Scholar 

  10. Chen, Y., Jie, X., Xu, W., Zuo, J.: A novel online incremental and decremental learning algorithm based on variable support vector machine. Clust. Comput. 22, 7435–7445 (2018)

    Article  Google Scholar 

  11. Yin, B., Gu, K., Wei, X., et al.: A cost-efficient framework for finding prospective customers based on reverse skyline queries. Knowl.-Based Syst. 152, 117 (2018)

    Article  Google Scholar 

  12. Benson, D., Boguski, M., Lipman, D.J., Ostell, J.: The national center for biotechnology information. Genomics 6(2), 389 (1990)

    Article  Google Scholar 

  13. Curtis, C., Shah, S., Chin, S., et al.: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346 (2012)

    Article  Google Scholar 

  14. Liu, B., Gao, X., Zhang, H.: BioSeq-Analysis2. 0: an updated platform for analyzing DNA, RNA and protein sequences at sequence level and residue level based on machine learning approaches. Nucleic Acids Res. 47(20), e127 (2019)

    Article  Google Scholar 

  15. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821 (2002)

    Article  MathSciNet  Google Scholar 

  16. Lu, X., Li, X., Liu, P., Qian, X., Miao, Q., Peng, S.: The integrative method based on the module-network for identifying driver genes in cancer subtypes. Molecules 23(2), 183 (2018)

    Article  Google Scholar 

  17. Jiao, Y., Widschwendter, M., Teschendorff, A.E.: A systems-level integrative framework for genome-wide dna methylation and gene expression data identifies differential gene expression modules under epigenetic control. Bioinformatics 30(16), 2360 (2014)

    Article  Google Scholar 

  18. Huang, T., Li, B., Cai, Y.: The integrative network of gene expression, microRNA, methylation and copy number variation in colon and rectal cancer. Curr. Bioninf. 11(1), 59 (2016)

    Article  Google Scholar 

  19. Akavia, U.D., Litvin, O., Kim, J., Sanchezgarcia, F., Kotliar, D., Causton, H.C., Pochanard, P., Mozes, E., Garraway, L.A., Pe’Er, D.: An integrated approach to uncover drivers of cancer. Cell 143(6), 1005 (2010)

    Article  Google Scholar 

  20. Lu, X., Lu, J., Liao, B., Li, X., Qian, X., Li, K.: Driver pattern identification over the gene co-expression of drug response in ovarian cancer by integrating high throughput genomics data. Sci. Rep. 16188(1), 1 (2017)

    Google Scholar 

  21. Lee, J., Gross, S.P., Lee, J.: Improved network community structure improves function prediction. Sci. Rep. 3(2197), 1 (2013)

    Google Scholar 

  22. Jin, D., Gabrys, B., Dang, J.: Combined node and link partitions method for finding overlapping communities in complex networks. Sci. Rep. 5, 8600 (2015). https://doi.org/10.1038/srep08600

    Article  Google Scholar 

  23. Nabavi, S., Schmolze, D., Maitituoheti, M., Malladi, S., Beck, A.H.: EMDomics: a robust and powerful method for the identification of genes differentially expressed between heterogeneous classes. Bioinformatics 32(4), 533 (2016)

    Article  Google Scholar 

  24. Anagha, J., Yves, V.D.P., Tom, M.: Analysis of a Gibbs sampler method for model-based clustering of gene expression data. Bioinformatics 24(2), 176 (2008)

    Article  Google Scholar 

  25. Farkas, I., Palla, G., Derényi, I., Vicske, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814 (2005)

    Article  Google Scholar 

  26. Bindea, G., Mlecnik, B.H., Charoentong, P., Tosolini, M., Kirilovsky, A.: ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8), 1091 (2009)

    Article  Google Scholar 

  27. Maere, S., Heymans, K., Kuiper, M.: BiNGO: A Cytoscape Plugin to Assess Overrepresentation of Gene Ontology Categories in Biological Networks. Oxford University Press, Oxford (2005)

    Google Scholar 

  28. Stein, L., DEustachio, P., Gopinathrao, G., Gillespie, M.: Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 33(Database issue), 428 (2005)

    Google Scholar 

  29. Prasad, T.S.K., Renu, G., Kumaran, K., Shivakumar, K., Sameer, K.: Human protein reference database-2009 update. Nucleic Acids Res. 37(5), 767 (2009)

    Article  Google Scholar 

  30. Jörnsten, R., Abenius, T., Kling, T., Schmidt, L., Johansson, E.: Network modeling of the transcriptional effects of copy number aberrations in glioblastoma. Mol. Syst. Biol. 7(1), 486 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinguo Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Zhu, Z., Peng, X. et al. InFun: a community detection method to detect overlapping gene communities in biological network. SIViP 15, 681–686 (2021). https://doi.org/10.1007/s11760-020-01638-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01638-y

Keywords

Navigation