Skip to main content
Log in

Diagnosis of epileptic EEG using a lagged Poincare plot in combination with the autocorrelation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, an efficient simple system for classifying electroencephalogram (EEG) data of normal and epileptic subjects is presented using lagged Poincare plot parameters. To this effect, a benchmark for choosing delays is defined based on the autocorrelation function. For each lag, traditional indicators, including the number of points lying on the identity line, the length of the minor (SD1)/major axis (SD2) of the fitted ellipse on the plot, the SD1/SD2 ratio, and the area of the ellipse, were calculated. The efficiency of the features in discriminating between the groups was examined based on the statistical significance of the differences. K-nearest neighbor and probabilistic neural network were employed as the classifier. The performance of the suggested scheme was evaluated using a publicly available database that includes numerous EEG data of healthy, during the incidence of an epileptic seizure and seizure-free intervals cases. It is indicated that the method can provide the maximum correct rate of 98.33%. Our results indicated the proposed scheme could characterize the dynamics of EEG signals in three groups, and it is suitable for the detection of epileptic seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maggioni, E., Bianchi, A.M., Altamura, A.C., Soares, J.C., Brambilla, P.: The putative role of neuronal network synchronization as a potential biomarker for bipolar disorder: a review of EEG studies. J. Affect. Disord. 212, 167–170 (2017)

    Article  Google Scholar 

  2. Tatum, W.O., Rubboli, G., Kaplan, P.W., Mirsatari, S.M., Radhakrishnan, K., Gloss, D., Caboclo, L.O., Drislane, F.W., Koutroumanidis, M., Schomer, D.L., Kasteleijn-Nolst Trenite, D., Cook, M., Beniczky, S.: Clinical utility of EEG in diagnosing and monitoring epilepsy in adults. Clin. Neurophysiol. 129(5), 1056–1082 (2018)

    Article  Google Scholar 

  3. Vicario, C.M., Salehinejad, M.A., Felmingham, K., Martino, G., Nitsche, M.A.: A systematic review on the therapeutic effectiveness of non-invasive brain stimulation for the treatment of anxiety disorders. Neurosci. Biobehav. Rev. 96, 219–231 (2019)

    Article  Google Scholar 

  4. Besedová, P., Vyšata, O., Mazurová, R., Kopal, J., Ondráková, J., Vališ, M., Procházka, A.: Classification of brain activities during language and music perception. SIViP (2019). https://doi.org/10.1007/s11760-019-01505-5

    Article  Google Scholar 

  5. Al-dabag, M.L., Ozkurt, N.: EEG motor movement classification based on cross-correlation with effective channel. SIViP 13(3), 567–573 (2019)

    Article  Google Scholar 

  6. Resalat, S.N., Saba, V.A.: practical method for driver sleepiness detection by processing the EEG signals stimulated with external flickering light. SIViP 9(8), 1751–1757 (2015)

    Article  Google Scholar 

  7. Zangeneh Soroush, M., Maghooli, K., Setarehdan, S.K., Nasrabadi, A.M.: A novel EEG-based approach to classify emotions through phase space dynamics. SIViP (2019). https://doi.org/10.1007/s11760-019-01455-y

    Article  Google Scholar 

  8. Goshvarpour, A., Goshvarpour, A.: EEG spectral powers and source localization in depressing, sad, and fun music videos focusing on gender differences. Cogn. Neurodyn. (2018). https://doi.org/10.1007/s11571-018-9516-y

    Article  Google Scholar 

  9. Goshvarpour, A., Abbasi, A., Goshvarpour, A.: Combination of sLORETA and nonlinear coupling for emotional EEG source localization. Nonlinear Dyn. Psychol. 20(3), 353–368 (2016)

    Google Scholar 

  10. Prasad, D.K., Liu, S., Chen, S.H.A., Quek, C.: Sentiment analysis using EEG activities for suicidology. Expert Syst. Appl. 103, 206–217 (2018)

    Article  Google Scholar 

  11. Mahapatra, A.G., Horio, K.: Classification of ictal and interictal EEG using RMS frequency, dominant frequency, root mean instantaneous frequency square and their parameters ratio. Biomed. Signal Process. Control 44, 168–180 (2018)

    Article  Google Scholar 

  12. Scally, B., Burke, M.R., Bunce, D., Delvenne, J.F.: Resting-state EEG power and connectivity are associated with alpha peak frequency slowing in healthy aging. Neurobiol. Aging 71, 149–155 (2018)

    Article  Google Scholar 

  13. Bachmann, M., Päeske, L., Kalev, K., Aarma, K., Lehtmets, A., Ööpik, P., Lass, J., Hinrikus, H.: Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis. Comput. Methods Programs Biomed. 155, 11–17 (2018)

    Article  Google Scholar 

  14. Sikdar, D., Roy, R., Mahadevappa, M.: Epilepsy and seizure characterisation by multifractal analysis of EEG subbands. Biomed. Signal Process. Control 41, 264–270 (2018)

    Article  Google Scholar 

  15. Gonzalez, C., Jensen, E.W., Gambus, P.L., Vallverdu, M.: Poincare plot analysis of cerebral blood flow signals: feature extraction and classification methods for apnea detection. PLoS ONE 13(12), e0208642 (2018)

    Article  Google Scholar 

  16. Goshvarpour, A., Goshvarpour, A.: Gender and age classification using a new Poincare section-based feature set of ECG. SIViP 13(3), 531–539 (2019)

    Article  Google Scholar 

  17. Goshvarpour, A., Goshvarpour, A.: Do meditators and non-meditators have different HRV dynamics? Cogn. Syst. Res. 54, 21–36 (2019)

    Article  Google Scholar 

  18. Goshvarpour, A., Goshvarpour, A., Rahati, S.: Analysis of lagged Poincaré plots in heart rate signals during meditation. Digit. Signal. Process. 21(2), 208–214 (2011)

    Article  Google Scholar 

  19. Goshvarpour, A., Goshvarpour, A.: Poincaré’s section analysis for PPG-based automatic emotion recognition. Chaos Solitons Fractal 114, 400–407 (2018)

    Article  Google Scholar 

  20. Goshvarpour, A., Abbasi, A., Goshvarpour, A.: Indices from lagged Poincare plots of heart rate variability: an efficient nonlinear tool for emotion discrimination. Australas. Phys. Eng. Sci. Med. 40(2), 277–287 (2017)

    Article  Google Scholar 

  21. Goshvarpour, A., Abbasi, A., Goshvarpour, A.: Fusion of heart rate variability and pulse rate variability for emotion recognition using lagged Poincare plots. Australas. Phys. Eng. Sci. Med. 40(3), 617–629 (2017)

    Article  Google Scholar 

  22. Sadeghi Bajestani, G., Hashemi Golpayegani, M.R., Sheikhani, A., Ashrafzadeh, F.: Poincare section analysis of the electroencephalogram in autism spectrum disorder using complement plots. Kybernetes 46(2), 364–382 (2017)

    Article  Google Scholar 

  23. Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C.E.: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 64, 061907 (2001)

    Article  Google Scholar 

  24. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  25. Demuth, H., Beale, M.: Neural Network Toolbox. The MathWorks, Inc., Natick (2000)

    Google Scholar 

  26. Goshvarpour, A., Abbasi, A., Goshvarpour, A.: Do men and women have different ECG responses to sad pictures? Biomed. Signal Process. Control 38, 67–73 (2017)

    Article  Google Scholar 

  27. Goshvarpour, A., Goshvarpour, A.: A novel feature level fusion for HRV classification using correntropy and Cauchy–Schwarz divergence. J. Med. Syst. 42, 109 (2018)

    Article  Google Scholar 

  28. Goshvarpour, A., Goshvarpour, A.: Human identification using a new matching Pursuit-based feature set of ECG. Comput. Methods Programs Biomed. 172, 87–94 (2019)

    Article  Google Scholar 

  29. Goshvarpour, A., Goshvarpour, A.: Human identification using information theory-based indices of ECG characteristic points. Expert Syst. Appl. 127, 25–34 (2019)

    Article  Google Scholar 

  30. Kannathal, N., Lim, C.M., Acharya, U.R., Sadasivan, P.K.: Entropies for detection of epilepsy in EEG. Comput. Methods Programs Biomed. 80(3), 187–194 (2005)

    Article  Google Scholar 

  31. Chua, K.C., Chandran, V., Acharya, R., Lim, C.M.: Automatic identification of epilepsy by HOS and power spectrum parameters using EEG signals: a comparative study. In: 30th Annual International IEEE EMBS Conference, Vancouver, British Columbia, Canada, 20–24 August 2008, pp. 3824–3827

  32. Chua, K.C., Chandran, V., Acharya, R., Lim, C.M.: Automatic identification of epileptic electroencephalography signals using higher-order spectra. Proc. Inst. Mech. Eng. H. 223(4), 485–495 (2009)

    Article  Google Scholar 

  33. Acharya, U.R., Chua, C.K., Lim, T.C., Dorithy, Suri, J.S.: Automatic identification of epileptic EEG signals using nonlinear parameters. J. Mech. Med. Biol. 9(4), 539–553 (2009)

    Article  Google Scholar 

  34. Acharya, U.R., Molinari, F., Sree, S.V., Chattopadhyay, S., Ng, K.-H., Suri, J.S.: Automated diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 7(4), 401–408 (2012)

    Article  Google Scholar 

  35. Acharya, U.R., Sree, S.V., Alvin, A.P., Yanti, R., Suri, J.S.: Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int. J. Neural Syst. 22(2), 1250002 (2012)

    Article  Google Scholar 

  36. Acharya, U.R., Yanti, R., Wei, J.Z., Krishnan, M.M.R., Hong, T.J., Martis, R.J., Min, L.C.: Automated diagnosis of epilepsy using CWT, HOS and texture parameters. Int. J. Neural Syst. 23, 1350009 (2013)

    Article  Google Scholar 

  37. Acharya, U.R., Fujita, H., Sudarshan, V.K., Bhat, S., Koh, J.E.W.: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowl. Based Syst. 88, 85–96 (2015)

    Article  Google Scholar 

  38. Martis, R.J., Acharya, U.R., Tan, J.H., Petznick, A., Tong, L., Chua, C.K., Ng, E.Y.K.: Application of intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction. Int. J. Neural Syst. 23, 1350023 (2013)

    Article  Google Scholar 

  39. Abdulhay, E., Elamaran, V., Chandrasekar, M., Balaji, V.S., Narasimhan, K.: Automated diagnosis of epilepsy from EEG signals using ensemble learning approach. Pattern Recognit. Lett. (2017). https://doi.org/10.1016/j.patrec.2017.05.021

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ateke Goshvarpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statements of ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goshvarpour, A., Goshvarpour, A. Diagnosis of epileptic EEG using a lagged Poincare plot in combination with the autocorrelation. SIViP 14, 1309–1317 (2020). https://doi.org/10.1007/s11760-020-01672-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01672-w

Keywords

Navigation