Skip to main content

Advertisement

Log in

Optimal harvesting and sensing durations for cognitive radio networks

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we optimize both harvesting and sensing durations for cognitive radio networks (CRNs). There are a primary source and destination \(P_S\) and \(P_D\). In the secondary network, there are a secondary source and destination \(S_S\) and \(S_D\). There are three time slots in secondary network. In the first one, secondary source \(S_S\) harvests energy from radio frequency (RF) signal received from another node A. Node A can be a base station or any other node transmitting RF signal. In the second time slot, secondary source senses the channel using the energy detector to detect primary source activity. When \(P_S\) is idle, the secondary source transmits data to secondary destination \(S_D\) in the last time slot. We optimize harvesting and sensing durations to maximize the throughput. Our results are valid for quadrature amplitude modulation (QAM), phase shift keying (PSK) and amplitude shift keying (ASK) in the presence of Rayleigh or Nakagami fading channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhan, J., Liu, Y., Tang, X., Chen, Q.: Relaying protocols for buffer-aided energy harvesting wireless cooperative networks. IET Netw. 7(3), 109–118 (2018)

    Article  Google Scholar 

  2. Xiuping, W., Feng, Y., Tian, Z.: The DF-AF selection relay transmission based on energy harvesting. In: 2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), pp. 174–177 (2018)

  3. Nguyen, H.T., Nguyen, S.Q., Hwang, W.-J.: Outage probability of energy harvesting relay systems under unreliable backhaul connections. In: 2018 2nd International Conference on Recent Advances in Signal Processing, Telecommunications and Computing (SigTelCom), pp. 19–23 (2018)

  4. Qiu, C., Hu, Y., Chen, Y.: Lyapunov optimized cooperative communications with stochastic energy harvesting relay. IEEE Internet Things J. 5(2), 1323–1333 (2018)

    Article  Google Scholar 

  5. Sui, D., Hu, F., Zhou, W., Shao, M., Chen, M.: Relay selection for radio frequency energy-harvesting wireless body area network with buffer. IEEE Internet Things J. 5(2), 1100–1107 (2018)

    Article  Google Scholar 

  6. Dung, L.T., Hoang, T.M., Tan, N.T., Choi, S.-G.: Analysis of partial relay selection in NOMA systems with RF energy harvesting. In: 2018 2nd International Conference on Recent Advances in Signal Processing, Telecommunications and Computing (SigTelCom), pp. 13–18 (2018)

  7. Le, Q.N., Bao, V.N., Quoc, A.B.: Full-duplex distributed switch-and-stay energy harvesting selection relaying networks with imperfect CSI: design and outage analysis. J. Commun. Netw. 20(1), 29–46 (2018)

    Article  Google Scholar 

  8. Gong, J., Chen, X., Xia, M.: Transmission optimization for hybrid half/full-duplex relay with energy harvesting. IEEE Trans. Wirel. Commun. 17(5), 3046–3058 (2018)

    Article  Google Scholar 

  9. Tang, H., Xie, X., Chen, J.: X-duplex relay with self-interference signal energy harvesting and its hybrid mode selection method. In: 2018 27th Wireless and Optical Communication Conference (WOCC), pp. 1–6 (2018)

  10. Chiu, H.-C., Huang, W.-J.: Precoding design in two-way cooperative system with energy harvesting relay. In: 2018 27th Wireless and Optical Communication Conference (WOCC), pp. 1–5 (2018)

  11. Gurjar, D.S., Singh, U., Upadhyay, P.K.: Energy harvesting in hybrid two-way relaying with direct link under Nakagami-m fading. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2018)

  12. Singh, K., Ku, M.-L., Lin, J.-C., Ratnarajah, T.: Toward optimal power control and transfer for energy harvesting amplify-and-forward relay networks. IEEE Trans. Wirel. Commun. 17(8), 4971–4986 (2018)

    Article  Google Scholar 

  13. Yuan, W., Qian, L.P., Huang, L., Shen, X.: Optimal relay selection and power control for energy-harvesting wireless relay networks. IEEE Trans. Green Commun. Netw. 2(2), 471–481 (2018)

    Article  Google Scholar 

  14. Fan, R., Atapattu, S., Chen, W., Zhang, Y., Evans, J.: Throughput maximization for multi-hop decode-and-forward relay network with wireless energy harvesting. IEEE Access 6, 24582–24595 (2018)

    Article  Google Scholar 

  15. Huang, Y., Wang, J., Zhang, P., Qihui, W.: Performance analysis of energy harvesting multi-antenna relay networks with different antenna selection schemes. IEEE Access 6, 5654–5665 (2018)

    Article  Google Scholar 

  16. Babaei, M., Aygl, M., Basar, E.: BER Analysis of dual-hop relaying with energy harvesting in Nakagami-m fading channel. IEEE Trans. Wirel. Commun. 17(7), 4352–4361 (2018)

    Article  Google Scholar 

  17. Kalluri, T., Peer, M., Bohara, V.A., da Costa, D.B., Dias, U.S.: Cooperative spectrum sharing-based relaying protocols with wireless energy harvesting cognitive user. IET Commun. 12(7), 838–847 (2018)

    Article  Google Scholar 

  18. Xie, D., Lai, X., Lei, X., Fan, L.: Cognitive multiuser energy harvesting decode-and-forward relaying system with direct links. IEEE Access 6, 5596–5606 (2018)

    Article  Google Scholar 

  19. Yan, Z., Chen, S., Zhang, X., Liu, H.L.: Outage Performance analysis of wireless energy harvesting relay-assisted random underlay cognitive networks. IEEE Internet Things J. 5(4), 2691–2699 (2018)

    Article  Google Scholar 

  20. Lei, H., Xu, M., Ansari, I.S., Pan, G., Qaraqe, K.A., Alouini, M.-S.: On secure underlay MIMO cognitive radio networks with energy harvesting and transmit antenna selection. IEEE Trans. Green Commun. Netw. 1(2), 192–203 (2017)

    Article  Google Scholar 

  21. Ercan, A.O.: Analysis of asynchronous cognitive radio system with imperfect sensing and bursty primary user traffic. Signal Image Video Process. 10(3), 593–600 (2016)

    Article  MathSciNet  Google Scholar 

  22. Li, F., Jiang, H., Fan, R., Tan, P.: Cognitive non-orthogonal multiple access with energy harvesting: an optimal resource allocation approach. IEEE Trans. Veh. Technol. 68(7), 7080 (2019)

    Article  Google Scholar 

  23. Liu, T., Wang, J., Shu, F.: Optimal sensing time based on the target function in cognitive spectrum sensing. In: 2010 2nd International Conference on Future Computer and Communication (2010)

  24. Shafie, A.E., Sultan, A.: Optimal selection of spectrum sensing duration for an energy harvesting cognitive radio. In: 2013 IEEE Global Communications Conference (GLOBECOM) (2013)

  25. Xi, Y., Burr, A., Wei, J.B., Grace, D.: A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Trans. Wirel. Commun. 10(5), 1373–1377 (2011)

    Article  Google Scholar 

  26. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 5th edn. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  27. Withers, C.S., Nadarajah, S.: On the product of gamma random variables. Qual. Quant. 47, 545–552 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raed Alhamad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Let \(X_{1}\) and \(X_{2}\) be two exponential r.v. with respective mean 1/\(\lambda _{1}\) and 1/\(\lambda _{2}.\)

The CDF of the product of two exponential rv \(X=X_{1}X_{2}\) is expressed as

$$\begin{aligned} P_{X}(x)=P(X_{1}X_{2}\le x)=\int _{0}^{+\infty }P(X_{1}\le \frac{x}{y} )\lambda _{2}e^{-\lambda _{2}y}\mathrm{d}y.\nonumber \\ \end{aligned}$$
(30)

We deduce

$$\begin{aligned} P_{X}(x)= & {} \int _{0}^{+\infty }\left[ 1-e^{-\lambda _{1}\frac{x}{y}}\right] \lambda _{2}e^{-\lambda _{2}y}\mathrm{d}y \nonumber \\= & {} 1-\int _{0}^{+\infty }e^{-\lambda _{1}\frac{x}{y}}\lambda _{2}e^{-\lambda _{2}y}\mathrm{d}y. \end{aligned}$$
(31)

We have [26]

$$\begin{aligned} \int _{0}^{+\infty }e^{-\frac{c}{y}}e^{-\frac{y}{d}}\mathrm{d}y=2\sqrt{\frac{c}{d}} K_{1}\left( 2\sqrt{\frac{c}{d}}\right) . \end{aligned}$$
(32)

We use (31) and (32) with \(c=\lambda _{1}x\) and \(d=\frac{1}{ \lambda _{2}}\); we obtain the CDF of X

$$\begin{aligned} P_{X}(x)=1-2\sqrt{\lambda _{1}\lambda _{2}x}K_{1}\left( 2\sqrt{\lambda _{1}\lambda _{2}x}\right) . \end{aligned}$$
(33)

The PDF of X is given by

$$\begin{aligned} p_{X}(x)= & {} -\frac{\sqrt{\lambda _{1}\lambda _{2}}}{\sqrt{x}}K_{1}\left( 2\sqrt{ \lambda _{1}\lambda _{2}x}\right) \nonumber \\&-\,2\sqrt{\lambda _{1}\lambda _{2}x}K_{1}^{^{\prime }}\left( 2\sqrt{\lambda _{1}\lambda _{2}x}\right) \frac{\sqrt{\lambda _{1}\lambda _{2}}}{ \sqrt{x}}. \end{aligned}$$
(34)

Using [26],

$$\begin{aligned} K_{1}^{^{\prime }}(z)=-K_{0}(z)-\frac{K_{1}(z)}{z}. \end{aligned}$$
(35)

We obtain the PDF of X

$$\begin{aligned} p_{X}(x)=2\lambda _{1}\lambda _{2}K_{0}\left( 2\sqrt{\lambda _{1}\lambda _{2}x}\right) . \end{aligned}$$
(36)

Appendix B

The derivative of throughput is expressed as

$$\begin{aligned} \frac{\partial Thr}{\partial \alpha }= & {} -(1-\beta )\log _2(M)[1-\mathrm{PEP}]P_{idle}(1-P_f)\nonumber \\&-\,(1-\alpha )(1-\beta )\log _2(M)\frac{\partial Thr}{\partial \alpha }P_{idle}(1-P_f)\nonumber \\&-\,(1-\alpha )(1-\beta )\log _2(M)\frac{\partial P_f}{\partial \alpha }P_{idle}(1-\mathrm{PEP})\nonumber \\ \end{aligned}$$
(37)
$$\begin{aligned} \frac{\partial Thr}{\partial \beta }= & {} -(1-\alpha )\log _2(M)[1-\mathrm{PEP}]P_{idle}(1-P_f) \nonumber \\&-\,(1-\alpha )(1-\beta )\log _2(M)\frac{\partial Thr}{\partial \beta }P_{idle}(1-P_f) \nonumber \\&-\,(1-\alpha )(1-\beta )\log _2(M)\frac{\partial P_f}{\partial \beta }P_{idle}(1-\mathrm{PEP})\nonumber \\ \end{aligned}$$
(38)

where

$$\begin{aligned}&\frac{\partial P_f}{\partial \alpha }=\frac{-\beta k_0[\varGamma '(N,\zeta /2)\varGamma (N)-\varGamma (N,\zeta /2)\varGamma '(N)]}{\varGamma (N)^2} \end{aligned}$$
(39)
$$\begin{aligned}&\frac{\partial P_f}{\partial \beta }=\frac{(1-\alpha ) k_0[\varGamma '(N,\zeta /2)\varGamma (N)-\varGamma (N,\zeta /2)\varGamma '(N)]}{\varGamma (N)^2}\nonumber \\ \end{aligned}$$
(40)
$$\begin{aligned}&\frac{\partial \mathrm{PEP}}{\partial \alpha }=\frac{-1}{(m_{AS_S}-1)!(m_{S_SS_D}-1)!} \nonumber \\&\quad \times \, \left[ \frac{(1-\beta )N_0T_0m_{AS_S}m_{S_SS_D}\lambda _{AS_S}\lambda _{S_SS_D}}{\mu E_A}\right] ^{0.5m_{AS_S}+0.5m_{S_SS_D}} \nonumber \\&\quad \times \, \alpha ^{-0.5m_{AS_S}-0.5m_{S_SS_D}-1}(1-\alpha )^{0.5m_{AS_S}+0.5m_{S_SS_D}-1} \nonumber \\&\quad \times \, K_{m_{S_SS_D}-m_{AS_S}}\nonumber \\&\quad \left( 2\sqrt{\frac{(1-\alpha ) (1-\beta )N_0T_0m_{AS_S}m_{S_SS_D}\lambda _{AS_S}\lambda _{S_SS_D}}{\mu \alpha E_A}}\right) \end{aligned}$$
(41)
$$\begin{aligned}&\frac{\partial \mathrm{PEP}}{\partial \beta }=\frac{-1}{(m_{AS_S}-1)!(m_{S_SS_D}-1)!} \nonumber \\&\quad \times \, \left[ \frac{(1-\alpha )N_0T_0m_{AS_S}m_{S_SS_D}\lambda _{AS_S}\lambda _{S_SS_D}}{\alpha \mu E_A}\right] ^{0.5m_{AS_S}+0.5m_{S_SS_D}} \nonumber \\&\quad \times \, (1-\beta )^{0.5m_{AS_S}+0.5m_{S_SS_D}-1}\nonumber \\&\quad \times \, K_{m_{S_SS_D}-m_{AS_S}}\nonumber \\&\quad \left( 2\sqrt{\frac{(1-\alpha )(1-\beta )N_0T_0m_{AS_S}m_{S_SS_D} \lambda _{AS_S}\lambda _{S_SS_D}}{\mu \alpha E_A}}\right) \end{aligned}$$
(42)
$$\begin{aligned}&\varGamma '(N)=\int _0^{+\infty }ln(x)x^{N-1}e^{-x}\mathrm{d}x, \end{aligned}$$
(43)

and

$$\begin{aligned} \varGamma '(N,a)=\int _a^{+\infty }ln(x)x^{N-1}e^{-x}\mathrm{d}x, \end{aligned}$$
(44)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhamad, R., Boujemâa, H. Optimal harvesting and sensing durations for cognitive radio networks. SIViP 14, 1397–1404 (2020). https://doi.org/10.1007/s11760-020-01682-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01682-8

Keywords

Navigation