Skip to main content
Log in

Quantitative analysis of SNR in bilinear time frequency domain

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Signal-to-noise ratio (SNR) is an essential concept or quantity on the result of a process or on the output of a filter, which helps us in designing, analyzing or evaluating a system. In this paper, we study SNR for bilinear time–frequency transform (TFT). Firstly, according to the definition of SNR in time domain, we define a proper form for SNR in time–frequency (T–F) plane for bilinear TFT; then, we extract SNR relation in terms of TFT kernel, signals power and noise power in time domain. The extracted relation of SNR for bilinear TFT that can be represented in terms of Wigner–Ville distribution (WVD) shows its dependence on the kernel used in the TFT. Finally, to illustrate the applicability of the proposed SNR, the relations of SNR for several distributions are extracted in the T–F domain, and the variation of SNR versus the noise variance is shown by curves. The results show that the WVD has higher SNR than the Rihaczek, Page, spectrogram and Levin respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. As an important example, for Wigner-Ville distribution that \( G\left( {t,\tau } \right) = \delta \left( t \right),{\text{we}}\;{\text{have}}\;R_{xx}^{G} \left( {t + \frac{\tau }{2},t - \frac{\tau }{2}} \right) = R_{xx} \left( {t + \frac{\tau }{2},t - \frac{\tau }{2}} \right) \).

References

  1. Chen, V.C.: Radar ambiguity function, time-varying matched filter, and optimal wavelet correlator. Opt. Eng. 33(7), 2212–2217 (1994)

    Article  Google Scholar 

  2. Chen, V.C.: Reconstruction of inverse synthetic aperture radar image using adaptive time–frequency wavelet transform (invited paper). SPIE Proc. Wavelet Appl. 2491, 373–386 (1995)

    Article  Google Scholar 

  3. Djurović, I.: Estimation of sinusoidal frequency-modulated signal parameters in high-noise environment. SIViP 11(8), 1537–1541 (2017)

    Article  Google Scholar 

  4. Gulum, T., Yildirim, A.E., Kata, L.: Parameter extraction of FMCW modulated radar signals using wigner-hough transform. IEEE Int. Symp. Comput. Intell. Inform. 12, 465–468 (2011)

    Google Scholar 

  5. Khan, A.N., Mohammadi, M., Ali, S.: ‘Instantaneous frequency estimation of intersecting and close multi-component signals with varying amplitudes. Signal, Image Video Process. 13(3), 517–524 (2018)

    Article  Google Scholar 

  6. Arivazhagan, S., Ganesan, L., Subash Kumar, T.G.: A modified statistical approach for image fusion using wavelet transform. SIViP 3, 137–144 (2009)

    Article  Google Scholar 

  7. Pitton, J., Wang, K., Juang, B.: Time-frequency analysis and auditory modeling for automatic recognition of speech. In: Proceedings of IEEE, Special Issue on Time–Frequency Analysis, Sept. (1996)

  8. Zeng, D., Zeng, X., Lu, G., Tang, B.: Automatic modulation classification of radar signals using the generalised time-frequency representation of Zhao, Atlas and Marks. IET Radar. Sonar Navig. 5(4), 507–516 (2010)

    Article  Google Scholar 

  9. Das, A.B., Bhuiyan, M.H., Alam, S.M.S.: Classification of EEG signals using normal inverse Gaussian parameters in the dual-tree complex wavelet transform domain for seizure detection. SIViP 10(2), 259–266 (2016)

    Article  Google Scholar 

  10. Xia, X.: A Quantitative Analysis of SNR in the short-time Fourier transform domain for multicomponent signals. IEEE Trans. Signal Process. 46(1), 200–203 (1998)

    Article  Google Scholar 

  11. Xia, X., Chen, V.C.: A quantitative SNR analysis for the pseudo Wigner–Ville distribution. IEEE Trans. Signal Process. 47(10), 2891–2894 (1999)

    Article  Google Scholar 

  12. Bi, G., Li, X., See, C.S.: LFM signal detection using LPP-Hough transform. J BV 91, 1432–1443 (2011)

    MATH  Google Scholar 

  13. Zhao, Y., Liu, Y., Li, X., Jiang, N.: “Time–frequency domain SNR estimation and its application in seismic data”, processing. J. Appl. Geophys. 107, 25–35 (2014)

    Article  Google Scholar 

  14. Xia, X.G., Wang, G., Chen, V.C.: Quantitative SNR analysis for ISAR imaging using joint time-frequency analysis-Short time Fourier transform. IEEE Trans. Aerosp. Electron. Syst. 38(2), 649–659 (2002)

    Article  Google Scholar 

  15. Zhang, Y.-N., Li, B.-Z., Goel, N.: Quantitative SNR analysis of QFM signals in the LPFT domain with Gaussian windows. Sci. China Inf. Sci. 62, 2 (2018)

    Google Scholar 

  16. Xia, X.G., Wang, G., Chen, V.C.: ‘A quantitative SNR analysis of linear chirps in the continuous-time short-time Fourier transform domain with Gaussian windows. In: IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), Salt Lake City, UT, USA, 6, pp. 3573–3576 (2001)

  17. Boashash, B.: Time-frequency signal analysis and processing. Eurasip and Academic Press Series in Signal and Image Processing, ch.2 (2003)

  18. Grochenig, K.: Foundations of time–frequency analysis, vol. 4. Springer, Berlin (2001)

    Book  Google Scholar 

  19. Seddighi, Z.: Extracting discriminant features from radar signals in IF band and classification radars data using these features. Thesis, Isfahan University of Technology (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Taban.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For a bilinear TFD of a signal as \( \rho_{s} \left( {t,f} \right) \), we can write as

$$ \begin{aligned} & \mathop \int \limits_{ - \infty }^{\infty } \langle\rho_{s} \left( {t,f} \right)\rangle {\text{d}}f \\ & = \mathop \int \limits_{ - \infty }^{\infty } \langle W_{s} \left( {t,f} \right)**_{{\left( {t,f} \right)}} \gamma \left( {t,f} \right)\rangle {\text{d}}f \\ & = \mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\mathop \int \limits_{{ - \frac{T}{2}}}^{{\frac{T}{2}}} \mathop \int \limits_{ - \infty }^{\infty } \mathop {\iint }\limits_{ - \infty }^{\infty } W_{s} \left( {t - \tau ,f - \tau^{\prime}} \right)\gamma \left( {\tau ,\tau^{\prime}} \right){\text{d}}\tau {\text{d}}\tau^{{\prime }} {\text{d}}t{\text{d}}f \\ & = \mathop {\iint }\limits_{ - \infty }^{\infty } \gamma \left( {\tau ,\tau^{\prime}} \right)\mathop \int \limits_{ - \infty }^{\infty } \mathop {\lim}\limits_{T \to \infty } \frac{1}{T}\mathop \int \limits_{{ - \frac{T}{2} - \tau }}^{{\frac{T}{2} - \tau }} W_{s} \left( {t,f} \right){\text{d}}t{\text{d}}f{\text{d}}\tau {\text{d}}\tau^{{\prime }} \\ & = \mathop {\iint }\limits_{ - \infty }^{\infty } \gamma \left( {\tau ,\tau^{\prime}} \right)\mathop \int \limits_{ - \infty }^{\infty } W_{s} \left( {t,f} \right){\text{d}}f{\text{d}}\tau {\text{d}}\tau^{{\prime }} \\ & = \mathop \int \limits_{ - \infty }^{\infty } W_{s} \left( {t,f} \right) df \times \mathop {\iint }\limits_{ - \infty }^{\infty } \gamma \left( {\tau ,\tau^{\prime}} \right){\text{d}}\tau {\text{d}}\tau^{{\prime }} . \\ \end{aligned} $$

As \( \mathop \int \limits_{ - \infty }^{\infty } W_{s} \left( {t,f} \right) df = \left| {s\left( t \right)} \right|^{2} \)

and with changing the variables, we have

$$ \mathop \int \limits_{ - \infty }^{\infty } \langle\rho_{s} \left( {t,f} \right)\rangle df = \langle\left| {s\left( t \right)} \right|^{2}\rangle \mathop {\iint }\limits_{ - \infty }^{\infty } \gamma \left( {t,f} \right){\text{d}}t{\text{d}}f $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seddighi, Z., Ahmadzadeh, M.R. & Taban, M.R. Quantitative analysis of SNR in bilinear time frequency domain. SIViP 14, 1583–1590 (2020). https://doi.org/10.1007/s11760-020-01702-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01702-7

Keywords

Navigation