Abstract
This paper presents a method to automatically segment tympanic membranes (TMs) from video-otoscopic images based on the deep learning approach. The paper introduces a hybrid loss function combining the Dice loss and active contour loss to the fully convolutional network. By this way, the proposed model takes into account the Dice similarity and the desired boundary contour information including the contour length as well as regions inside and outside the contour during learning. The proposed loss function is then applied to the fully convolutional network for tympanic membrane segmentation. We evaluate the proposed approach on TMs data set which includes 1139 otoscopic images from patients diagnosed with and without otitis media. Experimental results show that the proposed deep learning model achieves an average Dice similarity coefficient of 0.895, a mean Hausdorff distance of 19.189, and average perpendicular distance of 6.429, that outperforms other state-of-the-art methods.





Similar content being viewed by others
References
Jabarin, B., Pitaro, J., Lazarovitch, T., Gavriel, H., Muallem-Kalmovich, L., Eviatar, E., Marom, T.: Decrease in pneumococcal otitis media cultures with concomitant increased antibiotic susceptibility in the pneumococcal conjugate vaccines era. Otol. Neurotol. 38(6), 853–859 (2017)
Shie, C., Chang, H., Fan, F., Chen, C., Fang, T., Wang, P.: A hybrid feature-based segmentation and classification system for the computer aided self-diagnosis of otitis media. In: Proceedings of Conference IEEE Engineering in Medicine and Biology Society, pp. 4655–4658 (2014)
Fang, T., Rafai, E., Wang, P., Bai, C., Jiang, P., Huang, S.N., Chen, Y., Chao, Y., Wang, C., Chang, C.: Pediatric otitis media in Fiji: survey findings 2015. Int. J. Ped. Otorhinolaryngol. 85, 50–55 (2016)
Lieberthal, A., Carroll, A., Chonmaitree, T., Ganiats, T., Hoberman, A., Jackson, M., Joffe, M., Miller, D., Rosenfeld, R., Sevilla, X., Schwartz, R., Thomas, P., Tunkel, D.: The diagnosis and management of acute otitis media. Pediatrics 131(3), e964–e999 (2013)
Jaisinghani, V., Hunter, L., Li, Y., Margolis, R.: Quantitative analysis of tympanic membrane disease using video-otoscopy. Laryngoscope 110(10 Pt 1), 1726–1730 (2000)
Comunello, E., Wangenheim, A., Junior, V., Dornelles, C., Costa, S.: A computational method for the semi-automated quantitative analysis of tympanic membrane perforations and tympanosclerosis. Comput. Biol. Med. 39(10), 889–895 (2009)
Tran, T., Fang, T., Pham, V., Lin, C., Wang, P., Lo, M.: Development of an automatic diagnostic algorithm for pediatric otitis media. Otol. Neurotol. 39(8), 1060–1065 (2018)
Hsu, C., Chen, Y., Hwang, J., Liu, T.: A computer program to calculate the size of tympanic membrane perforations. Clin. Otolaryngol. Allied Sci. 29(4), 340–342 (2004)
Ibekwe, T., Adeosun, A., Nwaorgu, O.: Quantitative analysis of tympanic membrane perforation: a simple and reliable method. J. Laryngol. Otol. 123(1), e2 (2009)
Xie, X., Mirmehdi, M., Richard Maw, R., Amanda Hall, A.: Detecting abnormalities in tympanic membrane images. In: Proceedings of the 9th Medical Image Understanding and Analysis, pp. 19–22 (2005)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)
Huang, L., Zhao, Y.G., Yang, T.J.: Skin lesion segmentation using object scale-oriented fully convolutional neural networks. SIViP 13(3), 431–438 (2019)
Öztürk, S., Özkaya, U., Akdemir, B., Seyfi, L.: Convolution kernel size effect on convolutional neural network in histopathological image processing applications. In: International Symposium on Fundamentals of Electrical Engineering (ISFEE), Bucharest (2018)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Proceedings of the International Conference on Medical Imaging and Computer-Assisted Intervention, pp. 234–241 (2015)
Tran, P.V.: A fully convolutional neural network for cardiac segmentation in short-axis MRI. https://arxiv.org/abs/1604.00494 (2016)
Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder–decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)
Li, L., Zhao, X., Lu, W., Tan, S.: Deep learning for variational multimodality tumor segmentation in PET/CT. Neurocomputing (2019). https://doi.org/10.1016/j.neucom.2018.1010.1099
Duan, J., Schlemper, J., Bai, W., Dawes, J.W., Bello, G.T., Doumou, G., De Marvao, A., O’Regan, D.P., Rueckert, D.: Deep nested level sets: fully automated segmentation of cardiac MR images in patients with pulmonary hypertension. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 595–603 (2018)
Avendi, M.R., Kheradvar, A., Jafarkhani, H.: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30, 108–119 (2016)
Öztürk, S., Akdemir, B.: A convolutional neural network model for semantic segmentation of mitotic events in microscopy images. Neural Comput. Appl. 31(8), 3719–3728 (2019)
Öztürk, Ş., Akdemir, B.: Cell-type based semantic segmentation of histopathological images using deep convolutional neural networks. Int. J. Imaging Syst. Technol. 29(3), 234–246 (2019)
Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 4th International Conference on 3D Vision (3DV), pp. 565–571 (2016)
Chen, X., Williams, B.M., Vallabhaneni, S.R., Czanner, G., Williams, R., Zheng, Y.: Learning active contour models for medical image segmentation. In: Proceeding of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11623–11640 (2019)
Boykov, Y., Lee, V.S., Rusinek, H., Bansal, R.: Segmentation of dynamic N–D data sets via graph cuts using Markov models. In: Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 1058–1066 (2001)
Rezaee, M., van der Zwet, P., Lelieveldt, B., van der Geest, R., Reiber, J.: A multiresolution image segmentation technique based on pyramidal segmentation and fuzzy clustering. IEEE Trans. Image Process. 9(7), 1238–1248 (2000)
Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010)
Tran, T.T., Pham, V.T., Shyu, K.K.: Zernike moment and local distribution fitting fuzzy energy-based active contours for image segmentation. SIViP 8(1), 11–25 (2014)
Duan, J., Pan, Z., Yin, X., Wei, W., Wang, G.: Some fast projection methods based on Chan–Vese model for image segmentation. EURASIP J. Image Video Process. 7, 7 (2014)
Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
He, L., Peng, Z., Everding, B., Wang, X., Han, C., Weiss, K., Wee, W.G.: A comparative study of deformable contour methods on medical image segmentation. Image Vis. Comput. 26(2), 141–163 (2008)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)
Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)
Bresson, X., Esedoḡlu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)
Tohka, J.: Surface extraction from volumetric images using deformable meshes: a comparative study. In: Proceedings of the 7th European Conference in Computer Vision, pp. 350–364 (2002)
Chan, T., Sandberg, Y., Vese, L.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2), 130–141 (2000)
Wang, P., Chang, Y., Chuang, L., Su, H., Li, C.: Incidence and recurrence of acute otitis media in Taiwan’s pediatric population. Clinics 66(3), 395–399 (2011)
Acknowledgements
This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.05-2018.302.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pham, VT., Tran, TT., Wang, PC. et al. Tympanic membrane segmentation in otoscopic images based on fully convolutional network with active contour loss. SIViP 15, 519–527 (2021). https://doi.org/10.1007/s11760-020-01772-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-020-01772-7