Skip to main content
Log in

Quality-driven tone-mapping operator: a pseudo-exposure fusion-based approach

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

High dynamic range (HDR) images can present realistic scenes with improved detail in high- and low-brightness regions. Due to their limitations in application, HDR images are often processed by tone-mapping operators (TMOs) to be backward-compatible with traditional devices. Hence, for a better visual experience, a TMO should naturally preserve the original scene information with image quality as a guideline. With such motivation, we propose a new quality-driven TMO (QdTMO) by using a pseudo-exposure scheme and a local optimal exposed image (LOEI) fusion network. First, a pseudo-exposure scheme is designed to generate richly detailed LOEIs for different brightness regions of the image. Then, scene information in the original HDR image can be naturally preserved by a specifically designed LOEIs fusion network. Finally, the exposure residual energy and brightness naturalness are used to optimize the pseudo-exposure scheme and LOEI fusion for better quality in the resulting tone-mapped image. Experimental results demonstrate that tone-mapped images generated by the proposed QdTMO have better performance than existing TMOs in both subjective and objective evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mukherjee, R., Debattista, K., Rogers, T., et al.: Uniform color space-based high dynamic range video compression. IEEE Trans. Circuits Syst. Video Technol. 29(7), 2055–2066 (2019)

    Article  Google Scholar 

  2. Cerdacompany, X., Parraga, C.A., Otazu, X.: Which tone-mapping operator is the best? A comparative study of perceptual quality. J. Opt. Soc. Am. A 35(4), 626 (2018)

    Article  Google Scholar 

  3. Kim, C.Y., Woo, D.H., Lee, H.C.: High-dynamic-range ROIC with asynchronous self-controlled two-gain modes for MWIR focal plane arrays. IEEE Sens. J. 19(2), 615–622 (2019)

    Article  Google Scholar 

  4. Wang, J., Zhou, L.: Traffic Light Recognition with High Dynamic Range Imaging and Deep Learning. IEEE Trans. Transp. Syst. 20(4), 1341–1352 (2019)

    Article  Google Scholar 

  5. Yamashita, T., Fujita, Y.: HDR Video Capturing System with Four Image Sensors. ITE Trans. Media Technol. Appl. 5(4), 141–146 (2017)

    Article  Google Scholar 

  6. Reinhard, E., Heidrich, W., Debevec, P., et al.: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. Morgan Kaufmann, Burlington (2005)

    Google Scholar 

  7. Seetzen, H., Heidrich, W., Stuerzlinger, W., et al.: High dynamic range display systems. ACM Trans. Graph. 23(3), 760–768 (2004)

    Article  Google Scholar 

  8. Shan, Q., Jia, J., Brown, M.S.: Globally optimized linear windowed tone mapping. IEEE Trans. Vis. Comput. Graph. 16(4), 663–675 (2010)

    Article  Google Scholar 

  9. Tumblin, J., Rushmeier, H.: Tone reproduction for realistic images. IEEE Comput. Graph. 13(6), 42–48 (1993)

    Article  Google Scholar 

  10. Drago, F., Myszkowski, K., Annen, T., et al.: Adaptive logarithmic mapping for displaying high contrast scenes. Comput. Graph. Forum. 22(3), 419–426 (2003)

    Article  Google Scholar 

  11. Reinhard, E., Stark, M., Shirley, P., et al.: Photographic tone reproduction for digital images. ACM Trans. Graph. 21(3), 267–276 (2002)

    Article  Google Scholar 

  12. Durand, F., Dorsey, F.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graph. 21(3), 257–266 (2002)

    Article  Google Scholar 

  13. Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. ACM Trans. Graph. 21(3), 249–256 (2002)

    Article  Google Scholar 

  14. Mantiuk, R., Daly, S., Kerofsky, L.: Display adaptive tone mapping. ACM Trans. Graph. 27(3), 68 (2008)

    Article  Google Scholar 

  15. Duan, J., Bressan, M., Dance, C., et al.: Tone-mapping high dynamic range images by novel histogram adjustment. Pattern Recognit. 43(5), 1847–1862 (2010)

    Article  Google Scholar 

  16. Meylan, L., Susstrunk, S.: High dynamic range image rendering with a retinex-based adaptive filter. IEEE Trans. Image Process. 15(9), 2820–2830 (2006)

    Article  Google Scholar 

  17. Mezeni, D.M.E., Saranovac, L.V.: Enhanced local tone mapping for detail preserving reproduction of high dynamic range images. J. Vis. Commun. Image Represent. 53, 122–133 (2018)

    Article  Google Scholar 

  18. Khan, I.R., Rahardja, S., Khan, M.M.: A tone-mapping technique based on histogram using a sensitivity model of the human visual system. IEEE Trans. Ind. Electron. 65(4), 3469–3479 (2017)

    Article  Google Scholar 

  19. Rana, A., Valenzise, G., Dufaux, F.: Learning-based tone mapping operator for efficient image matching. IEEE Trans. Multimedia 21(1), 256–268 (2019)

    Article  Google Scholar 

  20. Chen, W., Wen, C., Yang, C.: Fast two-dimensional entropic thresholding algorithm. Proceedings of SPIE 2094, 1173–1184 (1993)

    Article  Google Scholar 

  21. Song, Y., Jiang, G., Yu, M.: Quality assessment method based on exposure condition on analysis for tone-mapped high-dynamic-range images. Signal Process 146, 33–40 (2018)

    Article  Google Scholar 

  22. Song, Y., Jiang, G., Yu, M.: Naturalness index for a tone-mapped high dynamic range image. Appl. Opt. 55(35), 10084–10091 (2016)

    Article  Google Scholar 

  23. Cai, J., Gu, S., Zhang, L.: Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans. Image Process. 27(4), 2049–2062 (2018)

    Article  MathSciNet  Google Scholar 

  24. Yeganeh, H., Wang, Z.: Objective quality assessment of tone-mapped images. IEEE Trans. Image Process. 22(2), 657–667 (2003)

    Article  MathSciNet  Google Scholar 

  25. Funt, B., Shi, L.: HDR Dataset. [Online]. Available: http://www.cs.sfu.ca/~colour/data/funt_hdr/. Accessed Sep. 22, 2017

  26. Kuang, J., Yamaguchi, H., Liu, C.: Evaluating HDR rendering algorithms. ACM Trans. Appl. Percept. 4(2), Article 9 (2007)

  27. Banterle, F., Artusi, A., Debattista, K.: Advanced High Dynamic Range Imaging, 2nd edn. AK Peters, CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  28. Gu, K., Wang, S., Zhai, G.: Blind quality assessment of tone-mapped images via analysis of information, naturalness, and structure. IEEE Trans. Multimedia 18(3), 432–443 (2016)

    Article  Google Scholar 

  29. Rana, A., Valenzise, G., Dufaux, F.: Evaluation of feature detection in HDR based imaging under changes in illumination conditions. In: IEEE International Symposium on Multimedia (2015)

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (NSFC) (61871247, 61671258), Natural Science Foudation of Zhejiang Province (LY19F020009, LQ20F010002), Natural Science Foundation of Ningbo (2019A610101), Scientific Research Plan of Education Department of Zhejiang Province (Y201839115, Y201941004), and it was also sponsored by the K.C. Wong Magna Fund of Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Yu, M., Xu, H. et al. Quality-driven tone-mapping operator: a pseudo-exposure fusion-based approach. SIViP 15, 529–537 (2021). https://doi.org/10.1007/s11760-020-01773-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01773-6

Keywords

Navigation