Skip to main content
Log in

Performance analysis of automated lesion detection of diabetic retinopathy using morphological operation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Diabetic retinopathy is one of the most common complications of diabetes. Hemorrhages, micro-aneurysms, exudates are one of the earlier signs of diabetic retinopathy. This paper proposes an algorithm of matched filter with morphological operation for the detection of lesions in the fundus retinal image. Contrast limited adaptive histogram equalization method is used for the extraction of vessels. The noise is removed from the images using matched filter. After enhancement, the thresholding is applied for vessel extraction. The threshold of the image is done by the iterative self-organizing data analysis technique algorithm method. After removal of optic disk and the blood vessels from the retinal image, the morphology method is used to easily identify different types of lesions. The diabetic retinopathy images were collected from DIARETDB1; the morphology operation method is analyzed using the metrics of sensitivity, specificity and accuracy. The proposed method's detection accuracy value for the recognition of micro-aneurysms, exudates and hemorrhages was 98.43%, 98.06% and 98.68% compared with the results of the differential evolution algorithm. Detection of lesion such as micro-aneurysms, hemorrhages and exudates was possible. When compared with the differential evolution algorithm, morphological method achieved good accuracy for the detection of diabetic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kar, S.S., Maity, S.P.: Automatic detection of retinal lesions for screening of diabetic retinopathy. IEEE Trans. Biomed. Eng. 65(3), 608–618 (2017)

    Article  Google Scholar 

  2. Biyani, R.S., Patre, B.M.: Algorithms for red lesion detection in Diabetic Retinopathy: a review. Biomed. Pharmacother. 107, 681–688 (2018)

    Article  Google Scholar 

  3. Zhou, W., Wu, C., Yi, Y., Du, W.: Automatic detection of exudates in digital color fundus images using superpixel multi-feature classification. IEEE Access 5, 17077–17088 (2017)

    Article  Google Scholar 

  4. Xu, J., Zhang, X., Chen, H., Li, J., Zhang, J., Shao, L., Wang, G.: Automatic analysis of microaneurysms turnover to diagnose the progression of diabetic retinopathy. IEEE Access 6, 9632–9642 (2018)

    Article  Google Scholar 

  5. Deepak, K.S., Sivaswamy, J.: Automatic assessment of macular edema from color retinal images. IEEE Trans. Med. Imag. 31(3), 766–776 (2011)

    Article  Google Scholar 

  6. Mansour, R.F.: Evolutionary computing enriched computer-aided diagnosis system for diabetic retinopathy: a survey. IEEE Rev. Biomed. Eng. 10, 334–349 (2017)

    Article  Google Scholar 

  7. Pires, R., Avila, S., Jelinek, H.F., Wainer, J., Valle, E., Rocha, A.: Beyond lesion-based diabetic retinopathy: a direct approach for referral. IEEE Trans. Inf. Technol. Biomed. 21(1), 193–200 (2015)

    Google Scholar 

  8. Dashtbozorg, B., Zhang, J., Huang, F., Ter Haar Romeny, B.M.: Retinal microaneurysms detection using local convergence index features. IEEE Trans. Image Process. 27(7), 3300–3315 (2018)

    Article  MathSciNet  Google Scholar 

  9. Akram, M.U., Khalid, S., Tariq, A., Khan, S.A., Azam, F.: Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput. Biol. Med. 45, 161–171 (2017)

    Article  Google Scholar 

  10. Raju, M., Sangramsing, K., Suvarnsing, B., Jaypalsing, K.: Automated detection of microaneurysm, hard exudates, and cotton wool spots in retinal fundus images. IOSR J. Comput. Eng. 17(6), 152–156 (2015). e-ISSN: 2278-0661

    Google Scholar 

  11. Zhou, L., Zhao, Y., Yang, J., Yu, Q., Xu, X.: Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images. IET Image Process 12(4), 563–571 (2017)

    Article  Google Scholar 

  12. Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: DREAM: diabetic retinopathy analysis using machine learning. IEEE Trans. Inf. Technol. Biomed. 18(5), 1717–1728 (2013)

    Google Scholar 

  13. Salazar-Gonzalez, A., Kaba, D., Li, Y., Liu, X.: Segmentation of the blood vessels and optic disk in retinal images. IEEE Trans. Inf. Technol. Biomed. 18(6), 1874–1886 (2015)

    Google Scholar 

  14. Roychowdhury, S., Koozekanani, D.D., Kuchinka, S.N., Parhi, K.K.: Optic disc boundary and vessel origin segmentation of fundus images. IEEE Trans. Inf. Technol. Biomed. 20(6), 1562–1574 (2015)

    Google Scholar 

  15. Morales, S., Engan, K., Naranjo, V., Colomer, A.: Retinal disease screening through local binary patterns. IEEE Trans. Inf. Technol. Biomed. 21(1), 184–192 (2015)

    Google Scholar 

  16. Seoud, L., Hurtut, T., Chelbi, J., Cheriet, F., Langlois, J.P.: Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Trans. Med. Imaging 35(4), 1116–1126 (2016)

    Article  Google Scholar 

  17. Wang, S., Tang, H.L., Hu, Y., Sanei, S., Saleh, G.M., Peto, T.: Localizing microaneurysms in fundus images through singular spectrum analysis. IEEE Trans. Biomed. Eng. 64(5), 990–1002 (2016)

    Article  Google Scholar 

  18. Annunziata, R., Garzelli, A., Ballerini, L., Mecocci, A., Trucco, E.: Leveraging multiscale hessian-based enhancement with a novel exudate inpainting technique for retinal vessel segmentation. IEEE Trans. Inf. Technol. Biomed. 20(4), 1129–1138 (2017)

    Google Scholar 

  19. Yu, S., Xiao, D., Kanagasingam, Y.: Machine learning based automatic neovascularization detection on optic disc region. IEEE Trans. Inf. Technol. Biomed. 22(3), 886–894 (2017)

    Google Scholar 

  20. Figueiredo, I.N., Kumar, S., Oliveira, C.M., Ramos, J.D., Engquist, B.: Automated lesion detectors in retinal fundus images. Comput. Biol. Med. 66, 47–65 (2017)

    Article  Google Scholar 

  21. Sánchez, C.I., Hornero, R., López, M.I., Aboy, M., Poza, J., Abásolo, D.: A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis. Med. Eng. Phys. 30(3), 350–357 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpana Murugan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaguselvi, R., Murugan, K. Performance analysis of automated lesion detection of diabetic retinopathy using morphological operation. SIViP 15, 797–805 (2021). https://doi.org/10.1007/s11760-020-01798-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01798-x

Keywords