Skip to main content
Log in

A novel image denoising approach based on a non-convex constrained PDE: application to ultrasound images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we are interested in the mathematical and simulation study of a new non-convex constrained PDE to remove the mixture of Gaussian–impulse noise densities. The model incorporates a non-convex data-fidelity term with a fractional constrained PDE. In addition, we adopt a non-smooth primal-dual algorithm to resolve the obtained proximal linearized minimization problem. The non-convex fidelity term is used to handle the high-frequency of the impulse noise component, while the fractional operator enables the efficient denoising of smooth areas, avoiding also the staircasing effect that appears on the relevant variational denoising models. Moreover, the proposed primal-dual algorithm helps in preserving fine structures and texture with good convergence rate. Numerical experiments, including ultrasound images, show that the proposed non-convex constrained PDE produces better denoising results compared to the state-of-the-art denoising models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andria, G., Attivissimo, F., Cavone, G., Giaquinto, N., Lanzolla, A.: Linear filtering of 2-d wavelet coefficients for denoising ultrasound medical images. Measurement 45(7), 1792–1800 (2012)

    Article  Google Scholar 

  2. Chan, T., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods, vol. 94. SIAM, Philadelphia (2005)

    Book  Google Scholar 

  3. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol. 147. Springer, Berlin (2006)

    Book  Google Scholar 

  4. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  5. Afraites, L., Atlas, A., Karami, F., Meskine, D.: Some class of parabolic systems applied to image processing. Discrete Contin. Dyn. Syst. Ser. B 21(6), 1671–1687 (2016)

    Article  MathSciNet  Google Scholar 

  6. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Osher, S., Sole, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H-1 norm. Multiscale Model. Simul. 1(3), 349–370 (2003)

    Article  MathSciNet  Google Scholar 

  8. Laghrib, A., Hadri, A., Hakim, A., Raghay, S.: A new multiframe super-resolution based on nonlinear registration and a spatially weighted regularization. Inf. Sci. 493, 34–56 (2019)

    Article  MathSciNet  Google Scholar 

  9. Baus, F., Nikolova, M., Steidl, G.: Fully smoothed l1-tv models: bounds for the minimizers and parameter choice. J. Math. Imaging Vis. 48(2), 295–307 (2014)

    Article  Google Scholar 

  10. Chan, T.F., Esedoglu, S.: Aspects of total variation regularized l1 function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005)

    Article  MathSciNet  Google Scholar 

  11. Durand, S., Fadili, J., Nikolova, M.: Multiplicative noise removal using l1 fidelity on frame coefficients. J. Math. Imaging Vis. 36(3), 201–226 (2010)

    Article  Google Scholar 

  12. Durand, S., Nikolova, M.: Denoising of frame coefficients using l1 data-fidelity term and edge-preserving regularization. Multiscale Model. Simul. 6(2), 547–576 (2007)

    Article  MathSciNet  Google Scholar 

  13. Hintermuller, M., Langer, A.: Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed l1/l2 data-fidelity in image processing. SIAM J. Imaging Sci. 6(4), 2134–2173 (2013)

    Article  MathSciNet  Google Scholar 

  14. Cai, J.-F., Chan, R.H., Nikolova, M.: Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise. Inverse Probl. Imaging 2(2), 187–204 (2008)

    Article  MathSciNet  Google Scholar 

  15. Fu, H., Ng, M.K., Nikolova, M., Barlow, J.L.: Efficient minimization methods of mixed l2–l1 and l1–l1 norms for image restoration. SIAM J. Sci. Comput. 27(6), 1881–1902 (2006)

    Article  MathSciNet  Google Scholar 

  16. Langer, A.: Automated parameter selection in the \(L^1L^2\)-TV model for removing Gaussian plus impulse noise. Inverse Probl. 33(7), 074002 (2017)

    Article  Google Scholar 

  17. Calatroni, L., Papafitsoros, K.: Analysis and automatic parameter selection of a variational model for mixed Gaussian and salt & pepper noise removal. Inverse Probl. 35(11), 114001 (2019)

    Article  MathSciNet  Google Scholar 

  18. Calatroni, L., Reyes, J.C.D.L., Schonlieb, C.-B.: Infimal convolution of data discrepancies for mixed noise removal. SIAM J. Imaging Sci. 10(3), 1196–1233 (2017)

    Article  MathSciNet  Google Scholar 

  19. Afraites, L., Hadri, A., Laghrib, A.: A denoising model adapted for impulse and Gaussian noises using a constrained-PDE. Inverse Probl. 36(2), 025006 (2020)

    Article  MathSciNet  Google Scholar 

  20. Jin, C., Luan, N.: An image denoising iterative approach based on total variation and weighting function. Multimed. Tools Appl. 79, 20947–20971 (2020)

    Article  Google Scholar 

  21. Shahdoosti, H.R., Rahemi, Z.: Edge-preserving image denoising using a deep convolutional neural network. Signal Process. 159, 20–32 (2019)

    Article  Google Scholar 

  22. Ali, R., Yunfeng, P., Amin, R.U.: A novel Bayesian patch-based approach for image denoising. IEEE Access 8, 38985–38994 (2020)

    Article  Google Scholar 

  23. Laghrib, A., Ben-Loghfyry, A., Hadri, A., Hakim, A.: A nonconvex fractional order variational model for multi-frame image super-resolution. Signal Process. Image Commun. 67, 1–11 (2018)

    Article  Google Scholar 

  24. Zhang, X., Bai, M., Ng, M.K.: Nonconvex-TV based image restoration with impulse noise removal. SIAM J. Imaging Sci. 10(3), 1627–1667 (2017)

    Article  MathSciNet  Google Scholar 

  25. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

  26. Lellmann, K.S.C., Papafitsoros, J., Spector, D.: Analysis and application of a nonlocal Hessian. SIAM J. Imaging Sci. 8(4), 2161–2202 (2015)

    Article  MathSciNet  Google Scholar 

  27. El Mourabit, I., El Rhabi, M., Hakim, A., Laghrib, A., Moreau, E.: A new denoising model for multi-frame super-resolution image reconstruction. Signal Process. 132, 51–65 (2017)

    Article  Google Scholar 

  28. Rockafellar, R.T.: Convex Analysis, vol. 28. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  29. Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces, vol. 11. SIAM, Philadelphia (2011)

    Book  Google Scholar 

  30. Clason, C., Jin, B.: A semismooth newton method for nonlinear parameter identification problems with impulsive noise. SIAM J. Imaging Sci. 5(2), 505–536 (2012)

    Article  MathSciNet  Google Scholar 

  31. Ulbrich, M.: Semismooth newton methods for operator equations in function spaces. SIAM J. Optim. 13(3), 805–841 (2002)

    Article  MathSciNet  Google Scholar 

  32. Biros, G., Ghattas, O.: Parallel Lagrange–Newton–Krylov–Schur methods for pde-constrained optimization. Part II: the Lagrange–Newton solver and its application to optimal control of steady viscous flows. SIAM J. Sci. Comput. 27(2), 714–739 (2005)

    Article  MathSciNet  Google Scholar 

  33. Clason, C., Valkonen, T.: Primal-dual extragradient methods for nonlinear nonsmooth PDE-constrained optimization. SIAM J. Optim. 27(3), 1314–1339 (2017)

    Article  MathSciNet  Google Scholar 

  34. Bergounioux, M., Piffet, L.: A second-order model for image denoising. Set Valued Var. Anal. 18(3–4), 277–306 (2010)

    Article  MathSciNet  Google Scholar 

  35. Papafitsoros, K., Schönlieb, C.-B.: A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vis. 48(2), 308–338 (2014)

    Article  MathSciNet  Google Scholar 

  36. Thanh, D.N., Prasath, V.S., Dvoenko, S., et al.: An adaptive method for image restoration based on high-order total variation and inverse gradient. Signal Image Video Process. 14, 1189–1197 (2020)

    Article  Google Scholar 

  37. Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 65(2), 480–491 (2011)

    Article  Google Scholar 

  38. Krissian, K.: Flux-based anisotropic diffusion applied to enhancement of 3-d angiogram. IEEE Trans. Med. Imaging 21(11), 1440–1442 (2002)

    Article  Google Scholar 

  39. Krissian, K., Aja-Fernández, S.: Noise-driven anisotropic diffusion filtering of MRI. IEEE Trans. Image Process. 18(10), 2265–2274 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their insightful remarks and corrections. Their feedback had a remarkable insight on the new version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hadri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4408 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadri, A., Afraites, L., Laghrib, A. et al. A novel image denoising approach based on a non-convex constrained PDE: application to ultrasound images. SIViP 15, 1057–1064 (2021). https://doi.org/10.1007/s11760-020-01831-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01831-z

Keywords

Navigation