Skip to main content

Advertisement

Log in

Superpixel-based object boundary gimmicking using optimized conditional random fields with random associations

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Superpixel-based clustering approach gains attention as an efficient pre-processing step for image segmentation during the last decade. In general, color similarity and position of the pixels are used as similarity metrics for segmentation. In this proposed work, a two-level object segmentation framework is proposed, where the mid-level cues are meritoriously utilized for efficient object segmentation. In the first level, a superpixel-based object boundary gimmicking algorithm with improved distance measure is used to gimmick the cluster boundaries. To make the picture visualization as human vision friendly, the regular clusters are decomposed literally only at the required places to adhere with object boundaries. Spurious Clusters are identified and merged to remove the noisy superpixels. As a post-processing step, superpixel-based optimized conditional random field (CRF) with random association (SOCRA) algorithm is proposed for efficient segmentation. Here homogeneity of the superpixel is imposed by optimized CRF to augment the object clusters with random associations. CRFs are employed for its excellent capability to characterize the relationship among the random variables. Extensive performance evaluation shows the proposed boundary gimmicking approach significantly competes with the state-of-the-art methods. Results obtained with Berkeley segmentation dataset (BSDS300) are compared with state-of-the-art methods in terms of under segmentation error, boundary recall, and achievable segmentation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pont-Tuset, J., Marques, F.: Supervised evaluation of image segmentation and object proposal techniques. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1465–1478 (2016)

    Article  Google Scholar 

  2. Michal, H., Stanislav, M.: A competition in unsupervised color image segmentation. Pattern Recogn. 57, 136–151 (2016)

    Article  Google Scholar 

  3. Sulaiman, S.N., Isa, N.A.M.: Adaptive fuzzy-K-means clustering algorithm for image segmentation. IEEE Trans. Consum. Electron. 56(4), 2661–2668 (2010)

    Article  Google Scholar 

  4. Chuang, K.S., Tzeng, H.L., Chen, S., Wu, J., Chen, T.-J.: Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Gr. 30(1), 9–15 (2006)

    Article  Google Scholar 

  5. Pedro, F., Daniel, P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  MathSciNet  Google Scholar 

  6. Ugarriza, L.G., Saber, E., Vantaram, S.R.: Automatic image segmentation by dynamic region growth and multi-resolution merging. IEEE Trans. Image Process. 18(10), 2275–2288 (2009)

    Article  MathSciNet  Google Scholar 

  7. Hong-Ying, Y., Xiang-Yang, W., Xian-Yin, Z.: Juan Bu: color texture segmentation based on image pixel classification. Eng. Appl. Artif. Intell. 25(8), 1656–1669 (2012)

    Article  Google Scholar 

  8. Ren, X., Malik, J.: Learning a classification model for segmentation. In: Proceeding of the 9th IEEE International Conference on Computer Vision, vol. 2, pp. 10–17 (2003)

  9. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  10. Weinland, D., Ronfard, R., Boyer, E.: A survey of vision-based methods for action representation, segmentation and recognition. Comput. Vis. Image Underst. 115(2), 224–241 (2011)

    Article  Google Scholar 

  11. Sertac, A., Koray, K.: Mixture-based superpixel segmentation and classification of SAR images. IEEE Geosci. Remote Sens. Lett. 13(11), 1721–1725 (2016)

    Article  Google Scholar 

  12. Yuan, Y., Fang, J., Wang, Q.: Robust superpixel tracking via depth fusion. IEEE Trans. Circuits Syst. Video Technol. 24(1), 15–26 (2014)

    Article  Google Scholar 

  13. Li, J., Zhang, H., Zhang, L.: Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 53(10), 5338–5351 (2015)

    Article  Google Scholar 

  14. Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: TurboPixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)

    Article  Google Scholar 

  15. Wang, J., Wang, X.: VCells: simple and efficient superpixels usingedge-weighted centroidal Voronoi tessellations. IEEE Trans. Pattern Anal. Mach. Intell. 34(6), 1241–1247 (2012)

    Article  Google Scholar 

  16. Bergh, M.V.D., Boix, X., Roig, G., Capitani, B.D., Gool, L.V.: SEEDS: superpixels extracted via energy-driven sampling. Int. J. Comput. Vis. 111(3), 298–314 (2015)

    Article  MathSciNet  Google Scholar 

  17. Shen, J., Du, Y., Wang, W., Li, X.: Lazy random walks for superpixel segmentation. IEEE Trans. Image Process. 23(4), 1451–1462 (2014)

    Article  MathSciNet  Google Scholar 

  18. Tianshui, C., Liang, L., Xian, W., Nong, X., Xiaonan, L.: Image segmentation with a hybrid ensemble of one-class support vector machines. IEEE Trans. Image Process. 27(12), 5827–5839 (2018)

    Article  MathSciNet  Google Scholar 

  19. Yu, Y.-H., Chang, C.-C.: Scenery image segmentation using support vector machines. Fundamenta Informaticae 61(3), 379–388 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Cyganek, B.: Image segmentation with a hybrid ensemble of one-class support vector machines: hybrid artificial intelligence systems. Lect. Notes Comput. Sci. 6076, 254–261 (2010)

    Article  Google Scholar 

  21. Sutton, C., McCallum, A.: An introduction to conditional random fields. Mach. Learn. 4(4), 267–373 (2011)

    MATH  Google Scholar 

  22. Louette, D., Melinda, S.: Farmers’ seed selection practices and traditional maize varieties in Cuzalapa, Mexico. Euphytica 113(1), 25–41 (2000)

    Article  Google Scholar 

  23. Martin, D., Fowlkes, T.D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Proc. IEEE Int. Conf. Comput. Vis. 2, 416–423 (2001)

    Google Scholar 

  24. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  25. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  26. Alastair, M., Simon, P., Jonathan, W., Umar, M. and Graham, J.: Superpixel lattices. IEEE Comput. Vis. Pattern Recogn. (CVPR) (2008)

  27. Liu, M.-Y., Tuzel, O., Ramalingam S., Chellappa, R.: Entropy rate superpixel segmentation. Proc. Comput. Vis. Pattern Recognit. (CVPR) 2097–2104 (2011)

  28. Li, Z., Chen, J.: Superpixel segmentation using linear spectral clustering. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) 1356–1363 (2015)

  29. Vincent, L., Pierre, S.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)

    Article  Google Scholar 

  30. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. PAMI 24(5), 281–288 (2002)

    Article  Google Scholar 

  31. Lafferty, J., McCallum, A., Pereira, F.C.N.: Condirional random fields: probabilistic models for segmenting and labelling sequential data. In: Proceedings of the 18th International Conference on Machine Learning (ICML) 282–289 (2002)

  32. Zhang, L., Ji, Q.: Image segmentation with a unified graphical model. IEEE Trans. Softw. Eng. 32(8), 1406–1425 (2010)

    Google Scholar 

  33. Jain, M., Singh, V., Rani, A.: A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evolut. Comput. 44, 148–175 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manonmani Arunkumar.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arunkumar, M., Pushparaj, V. Superpixel-based object boundary gimmicking using optimized conditional random fields with random associations. SIViP 15, 1065–1073 (2021). https://doi.org/10.1007/s11760-020-01832-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01832-y

Keywords

Navigation