Skip to main content
Log in

A new effective hybrid segmentation method based on C–V and LGDF

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Image segmentation is a significant research topic in image processing and computer vision. Active contour methods (ACMs) are widely used in image segmentation. In this paper, a new hybrid ACM segmentation model based on Chan–Vese (C–V) and Local Gaussian Distribution Fitting (LGDF) methods is proposed for the images with intensity inhomogeneity. In this model, new gradient descent flow equations are proposed and applied for the energy minimization of C–V and LGDF methods. Firstly, the proposed C–V method is applied to the image to effectively and quickly find the homogeneous regions of the image. Then, the proposed LGDF method is performed in these regions to detect inhomogeneous areas of the image. Thus, more effective and successful segmentation is obtained for inhomogeneous images. Experimental results show that the satisfactory segmentation results have been obtained by the proposed method for MRI and real images. Also, the proposed method is compared with the local binary fitting, LGDF, adaptive local-fitting-based, global and local weighted signed pressure ACMs, and convolutional neural network-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pratondo, A., Chui, C.K., Ong, S.H.: Integrating machine learning with region-based active contour models in medical image segmentation. J. Visual Commun. Image Represent 43, 1–9 (2017)

    Article  Google Scholar 

  2. Akram, F., Garcia, M.A., Puig, D.: Active contours driven by local and global fitted image models for image segmentation robust to intensity inhomogeneity. PloS One 12(4), e0174813 (2017)

    Article  Google Scholar 

  3. Rodtook, A., Kirimasthong, K., Lohitvisate, W., Makhanov, S.S.: Automatic initialization of active contours and level set method in ultrasound images of breast abnormalities. Pattern Recognit. 79, 172–182 (2018)

    Article  Google Scholar 

  4. Niu, S., Chen, Q., De Sisternes, L., Ji, Z., Zhou, Z., Rubin, D.L.: Robust noise region-based active contour model via local similarity factor for image segmentation. Pattern Recognit. 61, 104–119 (2017)

    Article  Google Scholar 

  5. Duan, Y., Peng, T., Qi, X.: Active contour model based on lif model and optimal dog operator energy for image segmentation. Optik 202, 163667 (2020)

    Article  Google Scholar 

  6. Ma, D., Liao, Q., Chen, Z., Liao, R., Ma, H.: Adaptive local-fitting-based active contour model for medical image segmentation. Signal Process. Image Commun. 76, 201–213 (2019)

    Article  Google Scholar 

  7. Jatoi, M.A., Kamel, N.: Brain source localization using reduced EEG sensors. Signal Image Video Process. 12(8), 1447–1454 (2018)

    Article  Google Scholar 

  8. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  9. Gupta, D., Anand, R.: A hybrid edge-based segmentation approach for ultrasound medical images. Biomed. Signal Process. Control 31, 116–126 (2017)

    Article  Google Scholar 

  10. Liu, C., Liu, W., Xing, W.: A weighted edge-based level set method based on multi-local statistical information for noisy image segmentation. J. Visual Commun. Image Represent 59, 89–107 (2019)

    Article  Google Scholar 

  11. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  Google Scholar 

  12. Lie, J., Lysaker, M., Tai, X.C.: A binary level set model and some applications to Mumford–Shah image segmentation. IEEE Trans. Image Process. 15(5), 1171–1181 (2006)

    Article  Google Scholar 

  13. Li, C., Kao, C.Y., Gore, J.C., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: 2007 IEEE Computer Society Conference on Computer Vision Pattern Recognition, pp. 1–7. IEEE (2007)

  14. Wang, L., He, L., Mishra, A., Li, C.: Active contours driven by local gaussian distribution fitting energy. Signal Process. 89(12), 2435–2447 (2009)

    Article  Google Scholar 

  15. Peng, Y., Liu, S., Qiang, Y., Wu, X., Hong, L.: A local mean and variance active contour model for biomedical image segmentation. J. Comput. Sci. Eng. 33, 11–19 (2019)

    MathSciNet  Google Scholar 

  16. Wang, L., Chang, Y., Wang, H., Wu, Z., Pu, J., Yang, X.: An active contour model based on local fitted images for image segmentation. Inf. Sci. 418, 61–73 (2017)

    Article  Google Scholar 

  17. Liu, S., Peng, Y.: A local region-based Chan–Vese model for image segmentation. Pattern Recognit. 45(7), 2769–2779 (2012)

    Article  Google Scholar 

  18. Wang, H.J., Liu, M.: Active contours driven by local gaussian distribution fitting energy based on local entropy. Int. J. Pattern Recognit Artif Intell. 27(06), 1355008 (2013)

    Article  MathSciNet  Google Scholar 

  19. Zhang, K., Zhang, L., Song, H., Zhou, W.: Active contours with selective local or global segmentation: a new formulation and level set method. Image Vision Comput. 28(4), 668–676 (2010)

    Article  Google Scholar 

  20. Wang, H., Huang, T.Z., Xu, Z., Wang, Y.: A two-stage image segmentation via global and local region active contours. Neurocomputing 205, 130–140 (2016)

    Article  Google Scholar 

  21. Zhang, L., Peng, X., Li, G., Li, H.: A novel active contour model for image segmentation using local and global region-based information. Mach Vis Appl. 28(1–2), 75–89 (2017)

    Article  Google Scholar 

  22. Han, B., Wu, Y.: Active contours driven by global and local weighted signed pressure force for image segmentation. Pattern Recognit. 88, 715–728 (2019)

    Article  Google Scholar 

  23. Vakili, N., Rezghi, M., Hosseini, S.M.: Improving image segmentation by using energy function based on mixture of Gaussian pre-processing. J. Visual Commun. Image Represent 41, 239–246 (2016)

    Article  Google Scholar 

  24. Soomro, S., Munir, A., Choi, K.N.: Hybrid two-stage active contour method with region and edge information for intensity inhomogeneous image segmentation. PloS One 13(1), e0191827 (2018)

    Article  Google Scholar 

  25. Zhao, F., Liang, H., Wu, X., Ding, D.: Active contour segmentation model based on global and local Gaussian fitting: Electronic Engineering. Electronic Engineering, pp. 43–48. CRC Press, Boca Raton (2018)

    Google Scholar 

  26. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M.: Deep learning for generic object detection: a survey. Int. J. Comput. Vision 128(2), 261–318 (2020)

    Article  Google Scholar 

  27. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.: A review on deep learning techniques applied to semantic segmentation. arXiv preprint arXiv:1704.06857 (2017)

  28. Jatoi, M.A., Dharejo, F.A., Teevino, S.H.: Comparison of machine learning techniques based brain source localization using EEG signals. Curr. Med. Imag. (2020). https://doi.org/10.2174/1573405616666200226122636

  29. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings IEEE Computer Society Conference Computer Vision Pattern Recognition, pp. 3431–3440 (2015)

  30. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 234-241). Springer, Cham

  31. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask rcnn. arxiv e-prints, article. arXiv preprint arXiv:1703.06870 (2017)

  32. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  33. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  34. Guo, X., Schwartz, L.H., Zhao, B.: Automatic liver segmentation by integrating fully convolutional networks into active contour models. Med. Phys. 46(10), 4455–4469 (2019)

    Article  Google Scholar 

  35. Zhu, X., Wei, Y., Lu, Y., Zhao, M., Yang, K., Wu, S., Zhang, H., Wong, K.K.: Comparative analysis of active contour and convolutional neural network in rapid left-ventricle volume quantification using echocardiographic imaging. Comput. Methods Programs Biomed. 199, 105914 (2020)

    Article  Google Scholar 

  36. Li, C., Kao, C.Y., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  37. Brainweb: Simulated brain database. http://www.bic.mni.mcgill.ca/brainweb/. Accessed 06 Feb 2020

  38. Berkeley Image Segmentation Database. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/. Accessed 06 Feb 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurullah Ozturk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, N., Ozturk, S. A new effective hybrid segmentation method based on C–V and LGDF. SIViP 15, 1313–1321 (2021). https://doi.org/10.1007/s11760-021-01862-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01862-0

Keywords

Navigation