Skip to main content
Log in

Adaptive NOMA/OMA for wireless communications

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose an adaptive NOMA OMA protocol that uses the best protocol between OMA and NOMA in order to maximize the total instantaneous throughput. Adaptive NOMA OMA will allow up to 1.8 dB gain compared to that of NOMA. Furthermore, adaptive NOMA OMA will offer up to 2.7 dB gain with respect to OMA. We also consider a hybrid NOMA/OMA transmission technique where some users use NOMA, and the rest of users are using OMA. We use NOMA to transmit data to K users, while OMA is employed to transmit data to the remaining \(N-K\) users. The optimal value of K is determined as well as the set of NOMA and OMA users in order to maximize the total instantaneous throughput. For a throughput of 8 bit/s/Hz, adaptive NOMA OMA hybrid will offer 10 dB gain with respect to NOMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li, Q.C., Niu, H., Papathanassiou, A.T., Wu, G.: 5G network capacity: key elements and technologies. IEEE Veh. Technol. Mag. 9(1), 71–78 (2014)

    Article  Google Scholar 

  2. Saito Y., Benjebbour A., Kishiyama Y., Nakamura T.: System- level performance evaluation of downlink non-orthogonal multiple access (NOMA). In: Proceeding IEEE International Symposium Personal, Indoor Mobile Radio Communnication (PIMRC), pp. 611–615 (2013)

  3. Ding, Z., Peng, M., Poor, H.V.: Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 19(8), 1462–1465 (2015)

    Article  Google Scholar 

  4. Ding, Z., Dai, H., Poor, H.V.: Relay selection for cooperative NOMA. IEEE Commun. Lett. 5(4), 416–419 (2016)

    Article  Google Scholar 

  5. Men, J., Ge, J.: Non-orthogonal multiple access for multiple-antenna relaying networks. IEEE Commun. Lett. 19(10), 1686–1689 (2015)

    Article  Google Scholar 

  6. Niu, Y., Gao, C., Li, Y., Su, L., Jin, D.: Exploiting multi-hop relaying to overcome blockage in directional mmwave small cells. J. Commun. Netw. 18(3), 364–374 (2016)

    Article  Google Scholar 

  7. Kim, J.B., Lee, I.H.: Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Commun. Lett. 19(11), 2037–2040 (2015)

    Article  Google Scholar 

  8. Zhong, C., Zhang, Z.: Non-orthogonal multiple access with co- operative full-duplex relaying. IEEE Commun. Lett. 20(12), 2478–2481 (2016)

    Article  Google Scholar 

  9. Yuanwe, L., Zhiguo, D., Elkashlan, M., Poor, H.V.: Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE J. Selec. Areas Commun. 34(4), 938–953 (2016)

    Article  Google Scholar 

  10. Varshney L.: Transporting information and energy simultaneously. In: Proceeding IEEE Internaiotnal Symposium Information Theory (ISIT), pp. 1612–1616, (2008)

  11. Xinwei, Y., Yuanwei, L., Shaoli, K., Arumugam, N.: Performance analysis of NOMA with fixed gain relaying over Nakagami-m fading channels. IEEE Access 5, 5445–5454 (2017)

    Article  Google Scholar 

  12. Jinjin, M., Jianhua, G.: Performance analysis of non-orthogonal multiple access in downlink cooperative network. IET Commun. 9(18), 2267–2273 (2015)

    Article  Google Scholar 

  13. Liu, Y., Ding, Z., Elkashlan, M., Yuan, J.: Non-orthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Trans. Veh. Technol. 65(12), 10152–10157 (2016)

    Article  Google Scholar 

  14. Bhattacharjee, S., Acharya, T., Bhattacharya, U.: NOMA inspired multicasting in cognitive radio networks. IET Commun. 12(15), 1845–1853 (2018)

    Article  Google Scholar 

  15. Liu, M., Song, T., Gui, G.: Deep cognitive perspective: resource allocation for NOMA based heterogeneous IoT with imperfect SIC. IEEE Inter. Things J. 6, 2885–2894 (2018)

    Article  Google Scholar 

  16. Lei, X., Zhou, Y., Wang, P., Liu, W.: Max–min resource allocation for video transmission in NOMA-based cognitive wireless networks. IEEE Trans. Commun. 66(11), 5804–5813 (2018)

    Article  Google Scholar 

  17. Bin, L., Xiaohui, Q., Kaizhi, H., Zesong, F., Fuhui, Z., Hu, R.Q.: Security-reliability tradeoff analysis for cooperative NOMA in cognitive radio networks. IEEE Trans. Commun. 67(1), 83–96 (2019)

    Article  Google Scholar 

  18. Wang, D., Men, S.: Secure energy efficiency for NOMA based cognitive radio networks with nonlinear energy harvesting. IEEE Access 6, 62707–62716 (2018)

    Article  Google Scholar 

  19. Zhou F., Chu Z., Sun H., Leung V.C.M.: Resource allocation for secure MISO-NOMA cognitive radios relying on SWIPT. In: IEEE International Conference Communications (ICC), pp. 20-24 (2018)

  20. Sun, H., Zhou, F., Hu, R.Q., Hanzo, L.: Robust beamforming design in a NOMA cognitive radio network relying on SWIPT. IEEE J. Selec. Areas Commun. 37(1), 142–155 (2019)

    Article  Google Scholar 

  21. Amini, M.R., Baidas, M.W.: Random-access NOMA in URLL energy-harvesting iot networks with short packet and diversity transmissions. IEEE Access 8, 220734–220754 (2020)

    Article  Google Scholar 

  22. Gupta P., Ghosh D.: Channel assignment with power allocation for sum rate maximization in NOMA cellular networks. In: 5th International Conference Computing, Communication and Security (ICCCS), Bihar, pp. 14–16 (2020)

  23. Agarwal, A., Chaurasiya, R., Sudhakar, R., Aditya, K.J.: Outage probability analysis for NOMA downlink and uplink communication systems with generalized fading channels. IEEE Access 8, 220461–220481 (2020)

    Article  Google Scholar 

  24. Xu, P., Wang, Y., Chen, G., Pan, G., Ding, Z.: Design and evaluation of buffer-aided cooperative NOMA with direct transmission in IoT. IEEE Inter. Things J, Early Access (2020)

  25. Proakis, J.: Digital Communications, 5th edn. Mac Graw-Hill, New York (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raed Alhamad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The cumulative distribution function (CDF) of the equivalent SINR at i-th NOMA user is given by

$$\begin{aligned} F(x)= & {} 1-P\left( \varGamma _{\mathrm{NOMA}}^{(N)}>x,\varGamma _{\mathrm{NOMA}}^{(N-1)}>x,\ldots ,\varGamma _{\mathrm{NOMA}}^{(i)}>x\right) \nonumber \\= & {} P\left( |h_{\mathrm{BSU}_i}|^2>\underset{i\le q \le N}{\mathrm{max}} \frac{N_0x}{E_{\mathrm{BS}}p_q-E_{\mathrm{BS}}\sum _{j=1}^{q-1}p_j}\right) \nonumber \\= & {} 1-e^{- \underset{i\le q \le N}{\mathrm{max}} \frac{N_0x}{E_{\mathrm{BS}}p_q-E_{\mathrm{BS}}\sum _{j=1}^{q-1}p_j}} \end{aligned}$$
(26)

By a derivative, we deduce the PDF of the equivalent SINR at i-th NOMA user

$$\begin{aligned} f(x)= & {} \underset{i\le q \le N}{\mathrm{max}} \frac{N_0}{E_{\mathrm{BS}}p_q-E_{\mathrm{BS}}\sum _{j=1}^{q-1}p_j}\nonumber \\&\times e^{- \underset{i\le q \le N}{\mathrm{max}} \frac{N_0x}{E_{\mathrm{BS}}p_q-E_{\mathrm{BS}}\sum _{j=1}^{q-1}p_j}} \end{aligned}$$
(27)

Therefore, \(f(\gamma _{\mathrm{NOMA}}(i))\) given in (19) and (22) is equal to

$$\begin{aligned} f(\gamma _{\mathrm{NOMA}}(i))= & {} \underset{i\le q \le N}{\mathrm{max}} \frac{N_0}{E_{\mathrm{BS}}p_q-E_{\mathrm{BS}}\sum _{j=1}^{q-1}p_j}\nonumber \\&\times e^{- \underset{i\le q \le N}{\mathrm{max}} \frac{N_0\gamma _{\mathrm{NOMA}}(i)}{E_{\mathrm{BS}}p_q-E_{\mathrm{BS}}\sum _{j=1}^{q-1}p_j}} \end{aligned}$$
(28)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhamad, R. Adaptive NOMA/OMA for wireless communications. SIViP 15, 1469–1475 (2021). https://doi.org/10.1007/s11760-021-01879-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01879-5

Keywords

Navigation