Skip to main content
Log in

Adaptive fuzzy weighted color histogram and HOG appearance model for object tracking with a dynamic trained neural network prediction

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Object tracking in video sequences represents an important task in computer vision applications like human mobility and social distance in pandemic scenarios, intelligent surveillance systems, etc. This paper presents a new method, fuzzy weighted color histogram neural network (FWCHNN) to estimate the position of an object and to update the appearance object model during tracking. The method involves two stages. Prediction is achieved through an online dynamic trained neural network, and correction is performed with a spiral sliding window. The method employs a new similitude appearance measure based on a codified model of the object considering its shape and color. The shape is represented with HOG features and the color features from information of a fuzzy weighted color histogram. FWCHNN shows the comparable results regarding state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yun, X., Xiao, G.: Spiral visual and motional tracking. Neurocomputing 249(8), 117–127 (2017)

    Article  Google Scholar 

  2. Jenkins, M.D., Barrie, P., Buggy, T., Morison, G.: Selective sampling importance resampling particle filter tracking with multibag subspace restoration. IEEE Trans. Cybern. 48(1), 264–276 (2018)

    Article  Google Scholar 

  3. Havangi, R.: Intelligent adaptive unscented particle filter with application in target tracking. SIViP (2020). https://doi.org/10.1007/s11760-020-01678-4

    Article  Google Scholar 

  4. Zhang, X., Xia, G., Lu, Q., Shen, W., Zhang, L.: Visual object tracking by correlation filters and online learning. ISPRS J. Photogramm. Remote. Sens. 140(6), 77–89 (2018)

    Article  Google Scholar 

  5. Lu, X., Li, J., He, Z., Liu, W., You, L.: Visual object tracking via collaborative correlation filters. SIViP 14, 177–185 (2020). https://doi.org/10.1007/s11760-019-01540-2

    Article  Google Scholar 

  6. Chen, K., Tao, W., Han, S.: Visual object tracking via enhanced structural correlation filter. Inf. Sci. 394–395(6), 232–245 (2017)

    Article  Google Scholar 

  7. Mirunalini, P., Jaisakthi, S.M., Sujana, R.: Tracking of object in occluded and non-occluded environment using SIFT and kalman filter. In: TENCON 2017–2017 IEEE Region 10 Conference, Penang, pp. 1290–1295 (2017)

  8. Zhang, S., Wang X.: Human detection and object tracking based on histograms of oriented gradients. In: 2013 9th International Conference on Natural Computation (ICNC), Shenyang, pp. 1349–1353 (2013)

  9. Rettkowski, J., Boutros, A., Göhringer, D.: HW/SW co-design of the HOG algorithm on a xilinx Zynq SoC. J. Parallel Distrib. Comput. 109(11), 50–62 (2017)

    Article  Google Scholar 

  10. Fan, R., Zhang, F., Zhang, M., Martin, R.R.: Robust tracking-by-detection using a selection and completion mechanism. Comput. Vis. Med. 3(3), 285–294 (2017)

    Article  Google Scholar 

  11. Ju, M., Ouyang, C., Chang, H.: Mean shift tracking using fuzzy color histogram. In: 2010 International Conference on Machine Learning and Cybernetics, Qingdao, pp. 2904–2908 (2010)

  12. Küçüktunç, O., Güdükbay, U., Ulusoy, Ö.: Fuzzy color histogram-based video segmentation. Comput. Vis. Image Underst. 114(1), 125–134 (2010)

    Article  Google Scholar 

  13. Wan, D., Sun, W., Yu, S., Li, L., Liu, W.: A novel background-weighted histogram scheme based on foreground saliency for mean-shift tracking. Multimed. Tools Appl. 75(17), 271–289 (2016)

    Google Scholar 

  14. Wu, Y., Lim, J., Yang, M.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  15. Yi, K.M., Jeong, H., Lee, B., Choi, J.Y.: Visual tracking in complex scenes through pixel-wise tri-modeling. Mach. Vis. Appl. 26(2–3), 205–217 (2015)

    Article  Google Scholar 

  16. Lan, X., Ye, M., Zhang, S., Zhou, H., Yuen, P.C.: Modality-correlation-aware sparse representation for RGB-infrared object tracking. Pattern Recogn. Lett. 130, 12–20 (2020)

    Article  Google Scholar 

  17. Kumar, N., Sukavanam, N.: An improved CNN framework for detecting and tracking human body in unconstraint environment. Knowl. Based Syst. 193, 105198 (2020)

    Article  Google Scholar 

  18. Zhang, J., Jin, X., Sun, J., Wang, J., Sangaiah, A.K.: Spatial and semantic convolutional features for robust visual object tracking. Multimed. Tools Appl. 79(21), 15095–15115 (2020)

    Article  Google Scholar 

  19. Liu, Q., Li, X., He, Z., Fan, N., Yuan, D., Wang, H.: Learning deep multi-level similarity for thermal infrared object tracking. IEEE Trans. Multimed. (2020). https://doi.org/10.1109/TMM.2020.3008028

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario I. Chacon-Murguia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 25 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chacon-Murguia, M.I., Rivero-Olivas, A. & Ramirez-Quintana, J.A. Adaptive fuzzy weighted color histogram and HOG appearance model for object tracking with a dynamic trained neural network prediction. SIViP 15, 1585–1592 (2021). https://doi.org/10.1007/s11760-021-01891-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01891-9

Keywords

Navigation