Skip to main content
Log in

A novel weighted anisotropic total variational model for image applications

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel weighted anisotropic total variational (WATV) model is proposed for image restoration. In this model, a weight function is defined to process degraded images, which is introduced into the \(\ell _{1}\) norm-based regularization. In order to efficiently compute the restored images, the alternating direction method of multipliers (ADMM) is explored and the according convergence is analyzed briefly. The proposed model is applied to recover images with blurring and noise. Compared experiments of deblurring, denoising as well as restoration are conducted to show the effectiveness and efficiency of the proposed WATV model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bollt, E.M., Chartrand, R., EsedogLu, S., et al.: Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion. Adv. Comput. Math. 31(1–3), 61–85 (2009)

    Article  MathSciNet  Google Scholar 

  2. Chen, H., Wang, C., Song, Y., et al.: Split bregmanized anisotropic total variation model for image deblurring. J. Vis. Commun. Image Represent. 31, 282–293 (2015)

    Article  Google Scholar 

  3. Hamidi, A.E., Ménard, M., Lugiez, M., et al.: Weighted and extended total variation for image restoration and decomposition. Pattern Recognit. 43(4), 1564–1576 (2010)

    Article  Google Scholar 

  4. Chen, H., Xu, Z., Feng, Q., et al.: An L0 regularized cartoon-texture decomposition model for restoring images corrupted by blur and impulse noise. Signal Process. Image Commun. 82 (2020)

  5. He, Y., Hussaini, M.Y., Ma, J., et al.: A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data. Pattern Recognit. 45(9), 3463–3471 (2012)

    Article  Google Scholar 

  6. Kwon, T.J., Li, J., Wong, A.: ETVOS: an enhanced total variation optimization segmentation approach for SAR sea-ice image segmentation. IEEE Trans. Geosci. Remote Sens. 51(2), 925–934 (2013)

    Article  Google Scholar 

  7. Block, K.T., Uecker, M., Frahm, J.: Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn. Reson. Med. 57(6), 1086–1098 (2007)

    Article  Google Scholar 

  8. Ritschl, L., Bergner, F., Fleischmann, C., et al.: Improved total variation-based CT image reconstruction applied to clinical data. Phys. Med. Biol. 56(6), 1545–1561 (2011)

    Article  Google Scholar 

  9. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  10. Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl. 19(6), S165–S187 (2003)

    Article  MathSciNet  Google Scholar 

  11. Nikolova, M.: Weakly constrained minimization: application to the estimation of images and signals involving constant regions. J. Math. Imaging Vis. 21(2), 155–175 (2004)

    Article  MathSciNet  Google Scholar 

  12. You, Y., Kaveh, M.: Fourth-order partial differential equation for noise removal. IEEE Trans. Image Process. 9(10), 1723–1730 (2000)

    Article  MathSciNet  Google Scholar 

  13. Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003)

    Article  Google Scholar 

  14. Zhang, J., Wei, Z.: A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising. Appl. Math. Model. 35(5), 2516–2528 (2011)

    Article  MathSciNet  Google Scholar 

  15. Zhang, Y., Zhang, F., Li, B.: Image restoration method based on fractional variable order differential. Multidimension. Syst. Signal Process. 29(3), 999–1024 (2018)

    Article  MathSciNet  Google Scholar 

  16. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  Google Scholar 

  17. Oh, S., Woo, H., Yun, S., et al.: Non-convex hybrid total variation for image denoising. J. Vis. Commun. Image Represent. 24(3), 332–344 (2013)

    Article  Google Scholar 

  18. Jin, Y., Jürgen, J., Wang, G.: A new nonlocal H1 model for image denoising. J. Math. Imaging Vis. 48(1), 93–105 (2014)

    Article  Google Scholar 

  19. Grasmair, M., Lenzen, F.: Anisotropic total variation filtering. Appl. Math. Optim. 62(3), 323–339 (2010)

    Article  MathSciNet  Google Scholar 

  20. Rodrigues, I.C., Sanches, J.M.R.: Convex total variation denoising of poisson fluorescence confocal images with anisotropic filtering. IEEE Trans. Image Process. 20(1), 146–160 (2011)

    Article  MathSciNet  Google Scholar 

  21. Pang, Z., Zhou, Y., Wu, T., Li, D.: Image denoising via a new anisotropic total-variation-based model. Sig. Process. Image Commun. 74, 140–152 (2019)

    Article  Google Scholar 

  22. Portilla, J.: Image restoration through l0 analysis-based sparse optimization in tight frames. In: IEEE International Conference on Image Processing, pp. 3909–3912 (2009)

  23. Li, X., Lu, C., Yi, X., Jia, J.: Image smoothing via L0 gradient minimization. In: The 2011 SIGGRAPH Asia Conference (2011)

  24. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  Google Scholar 

  25. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. Adv. Neural Inf. Process. Syst. (NIPS) (2009)

  26. Zhao, C., Wang, Y., Jiao, H., et al.: Lp-norm-based sparse regularization model for license plate deblurring. IEEE Access 8, 22072–22081 (2020)

    Article  Google Scholar 

  27. Cai, X., Chan, R., Zeng, T.: A two-stage image segmentation method using a convex variant of the Mumford–Shah model and thresholding. SIAM J. Imaging Sci. 6(1), 368–390 (2013)

    Article  MathSciNet  Google Scholar 

  28. Lou, Y., Zeng, T., Osher, S., et al.: A weighted difference of anisotropic and isotropic total variation model for Image Processing. SIAM J. Imaging Sci. 8(3), 1798–1823 (2015)

  29. Yan, Y., Ren, W., Guo, Y., et al.: Image deblurring via extreme channels prior. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4003-4011 (2017)

  30. Pan, J., Sun, D., Pfister, H., et al.: Deblurring images via dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 40(10), 2315–2328 (2017)

    Article  Google Scholar 

  31. Cheng, S., Liu, R., He, Y., et al.: Blind image deblurring via hybrid deep priors modeling. Neurocomputing 387 (2020)

  32. Zhang, H., Wu, Y., Zhang, L., et al.: Image deblurring using tri-segment intensity prior. Neurocomputing (2020)

  33. Peng, J., Shao, Y., Sang, N., Gao, C.: Joint Image deblurring and matching with feature-based sparse representation prior. Pattern Recognit. 103 (2020)

  34. Akbari, A., Trocan, M., Granado, B.: Sparse recovery-based error concealment. IEEE Trans. Multimedia 19(6), 1339–1350 (2017)

  35. Akbari, A., Trocan, M., Sanei, S., Granado, B.: Joint sparse learning with nonlocal and local image priors for image error concealment. IEEE Trans. Circuits Syst. Video Technol. 30(8), 2559–2574 (2020)

    Article  Google Scholar 

  36. Chambolle, A., Pock, T.: A first-order primal–dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

  37. Boyd, S., Parikh, N., Chu, E., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2008)

    Article  Google Scholar 

  38. Sawatzky, A., Xu, Q., Schirra, C.O., et al.: Proximal ADMM for multi-channel image reconstruction in spectral X-ray CT. IEEE Trans. Med. Imaging 33(8), 1657–1668 (2015)

    Article  Google Scholar 

  39. He, C., Hu, C., Li, X., et al.: A parallel primal–dual splitting method for image restoration. Inf. Sci. 358, 73–91 (2016)

    Article  Google Scholar 

  40. Chan, S.H., Wang, X., Elgendy, O.A.: Plug-and-play ADMM for image restoration: fixed point convergence and applications. IEEE Trans. Comput. Imaging 3(1), 84–98 (2016)

    Article  MathSciNet  Google Scholar 

  41. Ono, S.: Primal–dual plug-and-play image restoration. IEEE Signal Process. Lett. 24(8), 1108–1112 (2017)

    Article  Google Scholar 

  42. Adam, T., Paramesran, R.: Hybrid non-convex second-order total variation with applications to non-blind image deblurring. Signal Image Video Process. 14, 115–123 (2019)

    Article  Google Scholar 

  43. Meng-Meng, Li., Bing-Zhao, Li.: A novel weighted total variation model for image denoising. IET Image Processing. https://doi.org/doi.org/10.1049/ipr2.12259 (2021)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61671063) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 61421001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Zhao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, MM., Li, BZ. A novel weighted anisotropic total variational model for image applications. SIViP 16, 211–218 (2022). https://doi.org/10.1007/s11760-021-01977-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01977-4

Keywords

Navigation