Skip to main content
Log in

Bi-static target localization based on inaccurate TDOA-AOA measurements

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose an effective method to estimate the target location using two receiver stations and bi-static geometry. In this method, the least squares criterion-based optimization problem is formed using a combination of the time difference of arrival (TDOA) and angle of arrival (AOA) measurements to estimate the target location. This problem is solved by semi-definite relaxation without requiring an initial estimation of the response or comprehensive search. The proposed method can effectively localize the target location with high accuracy in the presence of high noise level and, consequently, inaccurate TDOA and AOA measurements of the input signal. The numerical results show that the proposed method estimates the target location more accurately than some state-of-the-art methods in the presence of inaccurate input parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rui, L., Ho, K.C.: Efficient closed-form estimators for multistatic sonar localization. IEEE Trans. Aerosp. Electron. Syst. 51(1), 600–614 (2015)

    Article  Google Scholar 

  2. Coraluppi, S.: Multistatic sonar localization. IEEE J. Ocean. Eng. 31(4), 964–974 (2006)

    Article  Google Scholar 

  3. Indelman, V., Gurfil, P., Rivlin, E., Rotstein, H.: Real-time vision-aided localization and navigation based on three-view geometry. IEEE Trans. Aerosp. Electron. Syst. 48(3), 2239–2259 (2012)

    Article  Google Scholar 

  4. Mantilla-Gaviria, I.A., Leonardi, M., Galati, G., Balbastre-Tejedor, J.V.: Localization algorithms for multilateration (MLAT) systems in airport surface surveillance. Signal Image Video Process. 9(7), 1549–1558 (2015)

    Article  Google Scholar 

  5. Zhou, B., Liu, A., Lau, V.K.N.: Successive localization and beamforming in 5g mmwave MIMO communication systems. IEEE Trans. Signal Process. 67(6), 1620–1635 (2019)

    Article  MathSciNet  Google Scholar 

  6. Li, W., Wang, L., Xiao, M., Li, Y., Zhang, H.: Closed form solution for 3D localization based on joint RSS and AOA measurements for mobile communications. IEEE Access. 8, 12-632–12-643 (2020)

    Article  Google Scholar 

  7. Aubry, A., Carotenuto, V., De Maio, A., Pallotta, L.: Localization in 2D PBR with multiple transmitters of opportunity: a constrained least squares approach. IEEE Trans. Signal Process. 68, 634–646 (2020)

    Article  MathSciNet  Google Scholar 

  8. Marino, A., Aubry, A., De Maio, A., Braca, P.: 2D constrained PBR localization via active radar designation. In: 2020 IEEE Radar Conference (RadarConf20), 2020, pp. 1–6

  9. Noroozi, A., Oveis, A.H., Sebt, M.A.: Iterative target localization in distributed MIMO radar from bistatic range measurements. IEEE Signal Process. Lett. 24(11), 1709–1713 (2017)

    Article  Google Scholar 

  10. Li, L.: Joint parameter estimation and target localization for bistatic MIMO radar system in impulsive noise. Signal Image Video Process. 9(8), 1775–1783 (2015)

    Article  Google Scholar 

  11. Feraidooni, M.M., Gharavian, D., Peimany, M., Imani, S.: 3-D target localization based on bi-static range measurements in widely separated mimo radars. Wirel. Pers. Commun. 2021. https://doi.org/10.1007/s11277-021-08197-6

  12. Poisel, R.A.: Electronic Warfare Target Location Methods. Artech House, Boston (2012)

    Google Scholar 

  13. Ho, D.K.C., Xu, W.: An accurate algebraic solution for moving source location using TDOA and FDOA measurements. IEEE Trans. Signal Process. 52(9), 2453–2463 (2004)

    Article  MathSciNet  Google Scholar 

  14. Ho, K.C., Vicente, L.M.: Sensor allocation for source localization with decoupled range and bearing estimation. IEEE Trans. Signal Process. 56(12), 5773–5789 (2008)

    Article  MathSciNet  Google Scholar 

  15. Wang, Y., Ho, K.C.: An asymptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network. IEEE Trans. Wirel. Commun. 14(12), 6524–6535 (2015)

    Article  Google Scholar 

  16. Yin, J., Wan, Q., Yang, S., Ho, K.C.: A simple and accurate TDOA-AOA localization method using two stations. IEEE Signal Process. Lett. 23(1), 144–148 (2016)

    Article  Google Scholar 

  17. Noroozi, A., Sebt, M.A.: Target localization in multistatic passive radar using SVD approach for eliminating the nuisance parameters. IEEE Trans. Aerosp. Electron. Syst. 53(4), 1660–1671 (2017)

    Article  Google Scholar 

  18. Sari, R., Zayyani, H.: RSS localization using unknown statistical path loss exponent model. IEEE Commun. Lett. 22(9), 1830–1833 (2018)

    Article  Google Scholar 

  19. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  20. Chan, Y., Hang, H.Y.C., Ching, P.: Exact and approximate maximum likelihood localization algorithms. IEEE Trans. Veh. Technol. 55(1), 10–16 (2006)

    Article  Google Scholar 

  21. Destino, G., Abreu, G.: On the maximum likelihood approach for source and network localization. IEEE Trans. Signal Process. 59(10), 4954–4970 (2011)

    Article  MathSciNet  Google Scholar 

  22. Foy, W.H.: Position-location solutions by taylor-series estimation. IEEE Trans. Aerosp. Electron. Syst. 12(2), 187–194 (1976)

    Article  Google Scholar 

  23. Chan, Y., Ho, K.C.: A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 42(8), 1905–1915 (1994)

    Article  Google Scholar 

  24. Ho, K.C., Lu, X., Kovavisaruch, L.: Source localization using TDOA and FDOA measurements in the presence of receiver location errors: analysis and solution. IEEE Trans. Signal Process. 55(2), 684–696 (2007)

    Article  MathSciNet  Google Scholar 

  25. Beck, A., Stoica, P., Li, J.: Exact and approximate solutions of source localization problems. IEEE Trans. Signal Process. 56(5), 1770–1778 (2008)

    Article  MathSciNet  Google Scholar 

  26. Wang, G., Chen, H.: An importance sampling method for TDOA-based source localization. IEEE Trans. Wirel. Commun 10(5), 1560–1568 (2011)

    Article  Google Scholar 

  27. Briechle, K., Hanebeck, U.D.: Localization of a mobile robot using relative bearing measurements. IEEE Trans. Robot. 20(1), 36–44 (2004)

    Article  Google Scholar 

  28. Lin, Z., Han, T., Zheng, R., Fu, M.: Distributed localization for 2-D sensor networks with bearing-only measurements under switching topologies. IEEE Trans. Signal Process. 64(23), 6345–6359 (2016)

    Article  MathSciNet  Google Scholar 

  29. Dogancay, K.: Bearings-only target localization using total least squares. Signal Process. 85(9), 1695–1710 (2005)

    Article  MathSciNet  Google Scholar 

  30. Tomic, S., Beko, M., Dinis, R.: 3-D target localization in wireless sensor networks using RSS and aoa measurements. IEEE Trans. Veh. Technol. 66(4), 3197–3210 (2017)

    Article  Google Scholar 

  31. Dogancay, K.: 3D pseudolinear target motion analysis from angle measurements. IEEE Trans. Signal Process. 63(6), 1570–1580 (2015)

    Article  MathSciNet  Google Scholar 

  32. Cong, L., Zhuang, W.: Hybrid TDOA/AOA mobile user location for wideband CDMA cellular systems. IEEE Trans. Wirel. Commun 1(3), 439–447 (2002)

    Article  Google Scholar 

  33. Bishop, A.N., Fidan, B., Dogancay, K., Anderson, B.D.O., Pathirana, P.N.: Exploiting geometry for improved hybrid AOA/TDOA-based localization. Signal Process. 88(7), 1775–1791 (2008)

    Article  Google Scholar 

  34. Jia, T., Wang, H., Shen, X., Jiang, Z., He, K.: Target localization based on structured total least squares with hybrid TDOA-AOA measurements. Signal Process. 143, 211–221 (2018)

    Article  Google Scholar 

  35. Wang, Y., Ho, D.K.C.: Unified near-field and far-field localization for AOA and hybrid AOA-TDOA positionings. IEEE Trans. Wirel. Commun 17(2), 1242–1254 (2018)

    Article  Google Scholar 

  36. Wang, G., Li, Y., Ansari, N.: A semidefinite relaxation method for source localization using TDOA and FDOA measurements. IEEE Trans. Veh. Technol. 62(2), 853–862 (2013)

    Article  Google Scholar 

  37. Guo, X., Chu, L., Sun, X.: Accurate localization of multiple sources using semidefinite programming based on incomplete range matrix. IEEE Sens. J. 16(13), 5319–5324 (2016)

    Article  Google Scholar 

  38. Wang, Y., Wu, Y.: An efficient semidefinite relaxation algorithm for moving source localization using TDOA and FDOA measurements. IEEE Commun. Lett. 21(1), 80–83 (2017)

  39. Zou, Y., Liu, H.: Semidefinite programming methods for alleviating clock synchronization bias and sensor position errors in TDOA localization. IEEE Signal Process. Lett. 27, 241–245 (2020)

    Article  Google Scholar 

  40. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  41. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx, Mar. 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdi Feraidooni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imani, S., Peimany, M., Hasankhan, M.J. et al. Bi-static target localization based on inaccurate TDOA-AOA measurements. SIViP 16, 239–245 (2022). https://doi.org/10.1007/s11760-021-01985-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01985-4

Keywords

Navigation