Skip to main content
Log in

Progressively refined scheme for wireless video sensor networks

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In Wireless Video Sensor Networks (WVSNs), the performance of video coding is typically influenced by the condition of wireless channels and the limited battery energy available at the sensor nodes. In order to deal with the video transmission, wireless channel losses and coding complexity issues in WVSNs, this paper proposes a novel Progressively Refined Scheme (PRS) in the context of a Distributed Video Coding (DVC) system. The main contributions include: (1) An Error Concealment (EC) algorithm as the first step of the PRS; (2) The design of the Repair Layers (RLs) based on Parallel Irregular Repeat Accumulate (PIRA) codes; (3) The progressive decoder of the PRS based on the refinement of Bit Planes (BP). The proposed PRS can significantly improve the quality of the Side Information (SI) and the reconstructed frames, thus leading to better Rate-Distortion (RD) performance for the Distributed Video Coding system. Experimental results show that the proposed PRS can achieve much better performance than the non-PRS in the presence of losses. In particular, the PSNR is increased by about 2 dB ~ 5 dB by adding 300kbps ~ 400kbps RLs and the RD performance of the whole DVC system is increased by about 2 ~ 3 dB PSNR for the same bit rate or, conversely, bit rate savings equal to about 50% are possible when compared with non-PRS based systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source-channel coding (DJSCC)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nikolov, M., Haas, Z.J.: Encoded sensing for energy efficient wireless sensor networks. IEEE Sens. J. 99, 1–1 (2017)

    Google Scholar 

  2. Tariq, J., Ijaz A. HEVC intra mode selection using Benford's Law. Circuits Syst. Signal Process., 2020(5).

  3. Zhang, Q., Wang, Y., Huang, L., et al.: Fast CU partition and intra mode decision method for H.266/VVC[J]. IEEE Access 99, 1 (2020)

    Google Scholar 

  4. Waghmare, M. B., Chatur, P.N.: Review on transfer of multimedia application over wireless sensor network[C]// 2020 4th International Conference on Trends in Electronics and Informatics (ICO EI). 2020.

  5. Zhou, X.: Image fusion in WMSNs based on tetrolet transform and compressed sensing[M]. 2019.

  6. Salim, C., Makhoul, A., Couturier, R.: Energy-efficient secured data reduction technique using image difference function in wireless video sensor networks. Multimed. Tools Appl. 79, 1–19 (2020)

    Article  Google Scholar 

  7. Zhang, X.F., Wang, Y., Wang, D.H., Li, Y.M.: Adaptive image compression based on compressive sensing for video sensor nodes. Multim. Tools Appl. 77(11), 13679–13699 (2018)

    Article  Google Scholar 

  8. He, F.Z.: Exploration of distributed image compression and transmission algorithms for wireless sensor networks. Int. J. Online Biomed. Eng. 15(1), 143–155 (2019)

    Article  Google Scholar 

  9. Artigas, X., Ascenso, J., Dalai, M., et al.: The DISCOVER codec: Architecture, Techniques and Evaluation. Proc. Picture Coding Symp. (PCS 07), Lisbon, Portugal, 2007, No. MMSPL-CONF-2009–014.

  10. He, J.: Exploration of wireless multimedia sensor network based on joint photographic experts group image coding algorithm. Int. J. Online Biomed. Eng. 15(1), 98–114 (2019)

    Article  Google Scholar 

  11. Nikzad, M., Bohlooli, A., Jamshidi, K.: Performance evaluation of error control schemes for distributed video coding over wireless multimedia sensor networks. Multimed. Tools Appl. 77(15), 19547–19568 (2018)

    Article  Google Scholar 

  12. Nangir, M., Asvadi, R., Chen, J., et al.: Successive Wyner-Ziv coding for the binary CEO problem under logarithmic loss. IEEE Trans. Commun., 2019. pp 1–32.

  13. Thao, N. T. H., Tien, V. H., San, V. V., et al.: Content based side information creation for distributed video coding [C]. Proceedings of 6th National Foundation for Science and Technology Development (NFSTD) Conference on Information and Computer Science (NICS). 2019, DEC 12–13, pp 223–227.

  14. Ma, N.: Distributed video coding scheme of multimedia data compression algorithm for wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 2019, (1).

  15. Nikzad, M., Bohlooli, A., Jamshidi, K.: An adaptive, cross layer error control scheme for distributed video coding over wireless multimedia sensor networks. Multimed. Tools Appl. 79(43–44), 32999–33021 (2020)

    Article  Google Scholar 

  16. Lee, C., Chen, J., Tsai, H., et al.: Toward enhancing the distributed video coder under a multiview video codec framework. J. Elect. Imaging 25(6), 063022 (2016)

    Article  Google Scholar 

  17. Kurka, D.B., Deniz, G.: Successive refinement of images with deep joint source-channel coding[C]// 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications, 2019.

  18. Bourtsoulatze, E., Kurka, D.B., Gunduz, D.: Deep joint source-channel coding for wireless image transmission. IEEE Trans. Cognit. Commun. Networking. 5(3), 567–579 (2019)

    Article  Google Scholar 

  19. Yang, H., Qing, L., He, X., et al.: Robust distributed video coding for wireless multimedia sensor networks. Multimed. Tools Appl. 77(4), 4453–4475 (2018)

    Article  Google Scholar 

  20. Yang, H., Qing, L., He, X., et al.: Scalable distributed video coding for wireless video sensor networks. IEICE Trans. Inf. Syst. E101D(1), 20–27 (2018)

    Article  Google Scholar 

  21. Duong, D.: Distributed coding based multiple descriptions for robust video transmission over error-prone networks[C]// CCCIS 2020: 2020 International Conference on Computer Communication and Information Systems. 2020.

  22. Taheri, Y.M., Ahmad, M.O., Swamy, M.: Successive refinement of side information frames in distributed video coding. Multimed. Tools Appl. 78(15), 1–26 (2019)

    Google Scholar 

  23. Jun, D.: Distributed video coding with adaptive two-step side information generation for smart and interactive media. Displays 59, 21–27 (2019)

    Article  Google Scholar 

  24. Mohammad, T.Y., Omair, A.M., Swamy, M.N.S.: A joint correlation noise estimation and decoding algorithm for distributed video coding. Multimed. Tools Appl. 77(6), 7327–7355 (2018)

    Article  Google Scholar 

  25. Shen, Y.C., Cheng, H.P., Luo, J.C., et al.: Efficient real-time distributed video coding by parallel progressive side information regeneration. IEEE Sens. J. 17(6), 1872–1883 (2017)

    Article  Google Scholar 

  26. Yang, J., Qing, L.B., Zeng, W.J.: High-order statistical modeling based on decision tree for distributed video coding and Xiaohai He. IEEE Trans. Circuits Syst. Video Technol. 99, 1–11 (2018)

    Google Scholar 

  27. Dash, B., Rup, S., Mohapatra, A., et al.: Decoder driven side information generation using ensemble of MLP networks for distributed video coding. Multimed. Tools Appl. 77(12), 15221–15250 (2018)

    Article  Google Scholar 

  28. Yang, J., Qing, L.B., Zeng, W.J., He, X.H.: High-order statistical modeling based on a decision tree for distributed video coding. IEEE Trans. Circuits Syst. Video Technol. 29(5), 1488–1502 (2019)

    Article  Google Scholar 

  29. Macchiavello, B., Mukherjee, D., De, D.R.: Iterative side-information generation in a mixed resolution Wyner-Ziv framework. Circuits Syst. Video Techn. IEEE Trans 19(10), 1409–2142 (2009)

    Article  Google Scholar 

  30. Li, Y., Chen, R.: Motion vector recovery for video error concealment based on the plane fitting. Multimed. Tools Appl. 76(13), 1–14 (2017)

    Google Scholar 

  31. Kaspi, A.: Rate-distortion function when side-information may be present at the decoder. IEEE Trans. Inf. Theory 40(6), 2031–2034 (1994)

    Article  Google Scholar 

  32. Xu, Q., Stanković, V.M., Xiong, Z.: Distributed joint source-channel coding of video using raptor codes: IEEE Xplore, US8315306[P]. 2012.

  33. Chi, Y., Liu, L., Guo, J., et al.: Variable-rate coding with constant BER for NOMA via multilevel IRA coding. IEEE Trans. Vehicular Tech. 68, 5149–5153 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China No: 61871278.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linbo Qing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Qing, L., Yang, J. et al. Progressively refined scheme for wireless video sensor networks. SIViP 16, 1435–1442 (2022). https://doi.org/10.1007/s11760-021-02064-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-02064-4

Keywords

Navigation