Skip to main content
Log in

Spline adaptive filtering algorithm based on Heaviside step function

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

To reduce the interference of impulsive noise when the spline adaptive filter (SAF) algorithm is used to identify nonlinear systems, this paper proposes a family of SAF algorithms using the Heaviside step function (HSF). The suitability of those cost functions proposed are investigated; those cost functions are design based on some HSF’s approximate functions. Then based on that, four SAF algorithms have been developed: SAF-HSF-sigmoid, SAF-HSF-erfc, SAF-HSF-atan, and SAF-HSF-tanh. Also, the bound of the learning rate has been derived for those proposed algorithms. The proposed SAF-HSF algorithms have been evaluated for nonlinear system identification and simulation studies to demonstrate their robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Scarpiniti, M., Comminiello, D., Scarano, G., Parisi, R., Uncini, A.: Steady-state performance of spline adaptive filters. IEEE Trans. Signal Process. 64(4), 816–828 (2016). https://doi.org/10.1109/TSP.2015.2493986

    Article  MathSciNet  MATH  Google Scholar 

  2. Scarpiniti, M., Comminiello, D., Parisi, R., Uncini, A.: Nonlinear system identification using IIR spline adaptive filters. Signal Process. 108, 30–35 (2015). https://doi.org/10.1016/j.sigpro.2014.08.045

    Article  MATH  Google Scholar 

  3. Wang, W., Zhao, H., Zeng, X., Dogancay, K.: Steady-state performance analysis of nonlinear spline adaptive filter under maximum correntropy criterion. IEEE Trans. Circuits Syst. II Express Briefs 67(6), 1154–1158 (2020). https://doi.org/10.1109/TCSII.2019.2929536

    Article  Google Scholar 

  4. Yang, L., Liu, J., Yan, R., Chen, X.: Spline adaptive filter with arctangent-momentum strategy for nonlinear system identification. Signal Process. 164, 99–109 (2019). https://doi.org/10.1016/j.sigpro.2019.06.007

    Article  Google Scholar 

  5. Yu, T., Li, W., Yu, Y., de Lamare, R.C.: Robust spline adaptive filtering based on accelerated gradient learning: design and performance analysis. Signal Process. (2021). https://doi.org/10.1016/j.sigpro.2021.107965

  6. Lesiak, C., Krener, A.: The existence and uniqueness of Volterra series for nonlinear systems. IEEE Trans. Autom. Control 23(6), 1090–1095 (1978)

    Article  MathSciNet  Google Scholar 

  7. Nelles, O.: Orthonormal basis functions for nonlinear system identification with local linear model trees (LOLIMOT). IFAC Proc. Vol. 30(11), 639–644 (1997)

    Article  Google Scholar 

  8. Bradley, J.B.: Neural networks: a comprehensive foundation. Inf. Process. Manag. 31(5) (1995)

  9. Yong-Yan, C., Frank, P.M.: Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Trans. Fuzzy Syst. 8(2), 200–211 (2000)

    Article  Google Scholar 

  10. Rahrooh, A., Shepard, S.: Identification of nonlinear systems using NARMAX model. Nonlinear Anal. Theory Methods Appl. 71(12), e1198–e1202 (2009)

    Article  Google Scholar 

  11. Sebald, D.J., Bucklew, J.A.: Support vector machine techniques for nonlinear equalization. IEEE Trans. Signal Process. 48(11), 3217–3226 (2000)

    Article  Google Scholar 

  12. ‘Adaptive nonlinear system identification’ (2007. 2007)

  13. Comminiello, D., Scarpiniti, M., Azpicueta-Ruiz, L.A., Arenas-Garcia, J., Uncini, A.: Functional link adaptive filters for nonlinear acoustic echo cancellation. IEEE Trans. Audio Speech Lang. Process. 21(7), 1502–1512 (2013)

    Article  Google Scholar 

  14. Gong, J.Q., Yao, B.: Neural network adaptive robust control of nonlinear systems in semi-strict feedback form. Automatica 37(8), 1149–1160 (2001)

    Article  MathSciNet  Google Scholar 

  15. ‘Nonlinear acoustic echo cancellation’: ‘Topics in Acoustic Echo and Noise Control’ (2006), pp. 205–261

  16. Mirri, D., Luculano, G., Filicori, F., Pasini, G., Vannini, G., Gabriella, G.P.: A modified Volterra series approach for nonlinear dynamic systems modeling. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 49(8), 1118–1128 (2002)

    Article  MathSciNet  Google Scholar 

  17. Farhat, N.: Optoelectronic neural networks and learning machines. IEEE Circuits Devices Mag. 5(5), 32–41 (1989)

    Article  Google Scholar 

  18. de Jesus, R.J., Yu, W.: Stability analysis of nonlinear system identification via delayed neural networks. IEEE Trans. Circuits Syst. II Express Briefs 54(2), 161–165 (2007)

    Article  Google Scholar 

  19. Scarpiniti, M., Comminiello, D., Parisi, R., Uncini, A.: Nonlinear spline adaptive filtering. Signal Process. 93(4), 772–783 (2013)

    Article  Google Scholar 

  20. Scarpiniti, M., Comminiello, D., Parisi, R., Uncini, A.: Hammerstein uniform cubic spline adaptive filters: learning and convergence properties. Signal Process. 100, 112–123 (2014)

    Article  Google Scholar 

  21. Guan, S., Li, Z.: Normalised spline adaptive filtering algorithm for nonlinear system identification. Neural Process. Lett. 46(2), 595–607 (2017)

    Article  MathSciNet  Google Scholar 

  22. Scardapane, S., Scarpiniti, M., Comminiello, D., Uncini, A.: Diffusion spline adaptive filtering. In: Proc. 2016 24th European Signal Processing Conference (EUSIPCO) 2016

  23. Patel, V., Comminiello, D., Scarpiniti, M., George, N.V., Uncini, A.: Design of hybrid nonlinear spline adaptive filters for active noise control. In: Proc. 2016 International Joint Conference on Neural Networks (IJCNN) 2016

  24. Rathod, M., Patel, V., George, N.V.: Generalized spline nonlinear adaptive filters. Expert Syst. Appl. 83, 122–130 (2017)

    Article  Google Scholar 

  25. Cheng, S., Wei, Y., Sheng, D., Wang, Y.: Identification for Hammerstein nonlinear systems based on universal spline fractional order LMS algorithm. Commun. Nonlinear Sci. Numer. Simul. 79 (2019)

  26. Yang, L.D., Liu, J.X., Zhao, Z.B., Yan, R.Q., Chen, X.F.: Interval variable step-size spline adaptive filter for the identification of nonlinear block-oriented system. Nonlinear Dyn. 98(3), 1629–1643 (2019)

    Article  Google Scholar 

  27. Yu, Y., He, H., Yang, T., Wang, X., de Lamare, R.C.: Diffusion normalized least mean m-estimate algorithms: design and performance analysis. IEEE Trans. Signal Process. 68, 2199–2214 (2020)

    Article  MathSciNet  Google Scholar 

  28. Liu, C., Peng, C., Tang, X., Liu, X.: Two variants of the IIR spline adaptive filter for combating impulsive noise. EURASIP J. Adv. Signal Process. 2019(1) (2019)

  29. Siyuan, P., Zongze, W., Xie, Z., Chen, B.: Nonlinear spline adaptive filtering under maximum correntropy criterion. In: Proc. TENCON 2015—2015 IEEE Region 10 Conference 2015

  30. Liu, C., Zhang, Z., Tang, X.: Sign normalised spline adaptive filtering algorithms against impulsive noise. Signal Process. 148, 234–240 (2018)

    Article  Google Scholar 

  31. Liu, C., Zhang, Z.: Set-membership normalised least M-estimate spline adaptive filtering algorithm in impulsive noise. Electron. Lett. 54(6), 393–395 (2018)

    Article  MathSciNet  Google Scholar 

  32. Liu, Q., He, Y.: Robust Geman-McClure based nonlinear spline adaptive filter against impulsive noise. IEEE Access 8, 22571–22580 (2020)

    Article  Google Scholar 

  33. Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion. IEEE Signal Process. Lett. 21(7), 880–884 (2014)

  34. Chen, B., Liu, X., Zhao, H., Principe, J.C.: Maximum correntropy Kalman filter. Automatica 76, 70–77 (2017)

    Article  MathSciNet  Google Scholar 

  35. Liu, W., Pokharel, P.P., Principe, J.C.: Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 55(11), 5286–5298 (2007)

    Article  MathSciNet  Google Scholar 

  36. Chen, B., Xing, L., Zhao, H., Zheng, N., Principe, J.C.: Generalized correntropy for robust adaptive filtering. IEEE Trans. Signal Process. 64(13), 3376–3387 (2016)

    Article  MathSciNet  Google Scholar 

  37. Wu, Z., Shi, J., Zhang, X., Ma, W., Chen, B.: Kernel recursive maximum correntropy. Signal Process. 117, 11–16 (2015)

    Article  Google Scholar 

  38. Qian, G., Ning, X., Wang, S.: Mixture complex correntropy for adaptive filter. IEEE Trans. Circuits Syst. II Express Briefs 66(8), 1476–1480 (2019)

    Article  Google Scholar 

  39. Li, Y., Jiang, Z., Shi, W., Han, X., Chen, B.: Blocked maximum correntropy criterion algorithm for cluster-sparse system identifications. IEEE Trans. Circuits Syst. II Express Briefs 66(11), 1915–1919 (2019)

    Article  Google Scholar 

  40. Zhao, J., Zhang, H., Wang, G.: Projected kernel recursive maximum correntropy. IEEE Trans. Circuits Syst. II Express Briefs 65(7), 963–967 (2018)

    Article  Google Scholar 

  41. Wang, S., Wang, W., Xiong, K., Iu, H.H.C., Tse, C.K.: Logarithmic hyperbolic cosine adaptive filter and its performance analysis. IEEE Trans. Syst. Man Cybern. Syst. 1–13 (2019)

  42. Legua, M.P., Morales, I., Sánchez Ruiz, L.M.: The Heaviside step function and MATLAB. In: Computational Science and Its Applications—ICCSA 2008, pp. 1212–1221 (2008)

  43. Cattermole, K.W.: The Fourier transform and its applications. Electron. Power 11(10) (1965)

  44. Patel, V., George, N.V.: Nonlinear active noise control using spline adaptive filters. Appl. Acoust. 93, 38–43 (2015)

    Article  Google Scholar 

  45. Guarnieri, S., Piazza, F., Uncini, A.: Multilayer feedforward networks with adaptive spline activation function. IEEE Trans. Neural Netw. 10(3), 672–683 (1999)

    Article  Google Scholar 

  46. Back, A.D., Tsoi, A.C.: A simplified gradient algorithm for IIR synapse multilayer perceptrons. Neural Comput. 5(3), 456–462 (1993)

    Article  Google Scholar 

  47. Guan, S., Jiang, R., Bian, H., Yuan, J., Xu, P., Meng, C., Biswal, B.: The profiles of non-stationarity and non-linearity in the time series of resting-state brain networks. Front. Neurosci. 14 (2020)

Download references

Acknowledgements

The Fundamental Research Funds supported the National Natural Science Foundation of China (61871420), the Central Universities Southwest Minzu University (2021XJTD01), Natural Science Foundation of Henan Polytechnic University (B2021-38), and the Wuhu and Xidian University special fund for industry-university-research cooperation (XWYCXY-012020014).

Funding

Fundamental Research Funds for the Central Universities, 2021XJTD01, Sihai GUAN, National Natural Science Foundation of China, 61871420, Biswal Bharat, Natural Science Foundation of Henan Polytechnic University, B2021-38, Yong Zhao, the Wuhu and Xidian University special fund for industry-university-research cooperation, XWYCXY-012020014, Yong Zhao

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihai Guan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, S., Cheng, Q., Zhao, Y. et al. Spline adaptive filtering algorithm based on Heaviside step function. SIViP 16, 1333–1343 (2022). https://doi.org/10.1007/s11760-021-02085-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-02085-z

Keywords

Navigation