Skip to main content
Log in

Tele-Holography: a new concept for lossless compression and transmission of inline digital holograms

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we introduce Tele-Holography, a new compression/transmission process dedicated to digital holograms. Tele-Holography enables a lossless compression and transmission of inline digital holograms based on wavelet transform. The transform used is an adaptive quincunx lifting scheme which is more suitable for lossless compression than classic wavelet transform. It results in a quincunx embedded zero-tree wavelet coder (QEZW), which allows scalable transmission. From the standpoint of transmission channel capacity, it reduces drastically the bit rate of the hologram transmission flow. A flurry of experiments, carried out on real digital holograms, showed that the proposed lossless compression process yields a significant improvement in compression ratio and total compressed size. The experiments show also the good performances of the proposed coder in term of real bit-rate for progressive transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schnars, U., Jueptner, W.: Digital Holography. Springer, Berlin (2004)

    Google Scholar 

  2. Yamaguchi, I., Kato, J., Ohta, S., Mizuno, Jun: Image formation in phase-shifting digital holography and applications to microscopy. Appl. Opt. 40(34), 6177–6186 (2001)

    Article  Google Scholar 

  3. Schnars, U., Jüptner, W.: Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13(9), R85 (2002)

    Article  Google Scholar 

  4. Leith, E.N.: Reconstructed wavefronts and communication theory. JOSA 52(10), 1123–1128 (1962)

    Article  Google Scholar 

  5. Gabor, D.: A new microscopic principle. Nature 161, 777–778 (1948)

    Article  Google Scholar 

  6. Naughton, T.J., Frauel, Y., Javidi, B., Tajahuerce, E.: Compression of digital holograms for three-dimensional object reconstruction and recognition. Appl. Opt. 41(20), 4124–4132 (2002)

    Article  Google Scholar 

  7. Darakis, E., Soraghan, J.J.: Reconstruction domain compression of phase-shifting digital holograms. Appl. Opt. 46(3), 351–356 (2007)

    Article  Google Scholar 

  8. Darakis, E., Naughton, T.J., Soraghan, J.J.: Compression defects in different reconstructions from phase-shifting digital holographic data. Appl. Opt. 46(21), 4579–4586 (2007)

    Article  Google Scholar 

  9. Shortt, A.E., Naughton, T.J., Javidi, B.: Compression of digital holograms of three-dimensional objects using wavelets. Opt. Express 14(7), 2625–2630 (2006)

    Article  Google Scholar 

  10. Sweldens, W.: The lifting scheme: a new philosophy in biorthogonal wavelet constructions. SPIE Wavelet Appl. Signal Image Process. III 2569, 68–79 (1995)

    Google Scholar 

  11. Hattay, J., Benazza-Benyahia, A., Pesquet, J.-C.: Adaptive lifting for multicomponent image coding through quadtree partitioning. In: Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, Philadelphia, USA (2005)

  12. Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Process. 41(12), 3445–3462 (1993)

    Article  Google Scholar 

  13. Slimani, F., Gréhan, G., Gouesbet, G., Allano, D.: Near-field Lorenz-Mie theory and its application to Microholography. Appl. Opt. 23(22), 4140–4148 (1984)

    Article  Google Scholar 

  14. Onural, L.: Diffraction from a wavelet point of view. Opt. Lett. 18, 846–848 (1993)

    Article  Google Scholar 

  15. Belaid, S., Lebrun, D., Ozkul, C.: Application of two dimensional wavelet transform to hologram analysis: visualization of glass fibers in a turbulent flame. Opt. Eng. 36, 1947–1951 (1997)

    Article  Google Scholar 

  16. Lee, Dae-Hyun., Sim, Jae-Young., Kim, Chang-Su., Lee, Sang-Uk.: Viewing angle dependent coding of digital holograms. EUSIPCO 19, 1367–1371 (2011)

    Google Scholar 

  17. Coetmellec, S., Lebrun, D., Ozkul, C.: Characterization of diffraction patterns directly from in-line holograms with the fractional Fourier Transform. Appl. Opt. 41, 312–319 (2002)

    Article  Google Scholar 

  18. Weng, J., Zhong, J., Hu, C.: Digital reconstruction based on angular spectrum diffraction with the ridge of wavelet transform in holographic phase-contrast microscopy. Opt. Express 16(26), 21971–21981 (2008)

    Article  Google Scholar 

  19. Hattay, J., Belaid, S., Lebrun, D., Naanaa, W.: Digital in-line particle holography: twin-image suppression using sparse blind source separation. Signal, Image and Video Processing ISSN 1863-1703 Springer May (2014)

  20. Sweldens, W.: The lifting scheme: a new philosophy in biorthogonal wavelet constructions. SPIE Wavelet Appl. Signal Image Process. III 2569, 68–79 (1995)

    Google Scholar 

  21. Santa-Cruz, D., Ebrahimi, T.: A study of JPEG2000 still image coding versus other standards. In: Proceedings of the X EUSIPCO, Tampere, Finland, September 5–8 (2000)

  22. Hattay, J., Belaid, S., Naanaa, W.: Geometric blind source separation using adaptive lifting scheme. In: 17th IEEE SPA Conference SPA’2013, Poland (2013)

  23. Hattay, J., Benazza-Benyahia, A., Pesquet, J.C.: Adaptive lifting schemes using variablesize block segmentation. In: Proceedings of the ACIVS Conference, Brussels, Belgium, August 31–September 3 (2004)

  24. Hattay, J., Benazza-Benyahia, A., Pesquet, J.C.: An embedded coder for multispectral image compression based on vector lifting structures. In: 12th IEEE International Conference on Electronics, Circuits and Systems, 2005, ICECS (2005)

  25. Shortt, A.E., Naughton, T.J., Javidi, B.: Histogram approaches for lossy compression of digital holograms of three-dimensional objects. IEEE Trans. Image Process. 16(6), 1548–1556 (2007)

    Article  MathSciNet  Google Scholar 

  26. Hattay, J., Belaid, S., Aguili, T., Lebrun, D.: A new wavelet-based reconstruction algorithm for twin image removal in digital in-line holography. Opt. Lasers Eng. 82, 159–172 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamel Hattay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belaid, S., Hattay, J. & Machhout, M. Tele-Holography: a new concept for lossless compression and transmission of inline digital holograms. SIViP 16, 1659–1666 (2022). https://doi.org/10.1007/s11760-021-02121-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-02121-y

Keywords

Navigation