Skip to main content
Log in

An end-to-end single image dehazing network based on U-net

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Single image haze removal is always significant for computer advanced vision tasks, while it is also a challenging problem. In this paper, inspired of the recent methods, we proposed an end-to-end network with encoding–decoding structure and jumping layers for single image dehazing. The network combined the advantages of VGG16 and the U-net and adopted different jumping layers to retain most of the image feature information. In order to clarify the image features like contrast and color distribution, the scale-invariant loss function and the proposed histogram loss function were used. We compared the algorithm with the several state-of-the-art algorithms qualitatively and quantitatively. Experimental results demonstrated that the proposed algorithm has achieved favorable dehazing results on both indoor and outdoor synthetic hazy testing set and real-world set. In particular, it obtained the better dehazing results for the slight hazy conditions than other density of haze.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang, Z., Tao, D.: Slow feature analysis for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 436–450 (2012). https://doi.org/10.1109/TPAMI.2011.157

    Article  Google Scholar 

  2. Long J., Shelhamer E., Darrell T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015). https://doi.org/10.1109/CVPR.2015.7298965

  3. Shao, L., Liu, L., Li, X.: Feature learning for image classification via multiobjective genetic programming. IEEE Trans. Neural Netw. Learn. Syst. 25(7), 1359–1371 (2014). https://doi.org/10.1109/TNNLS.2013.2293418

    Article  Google Scholar 

  4. Kim, J.Y., Kim, L.S., Hwang, S.H.: An advanced contrast enhancement using partially overlapped sub-block histogram equalization. IEEE Trans. Circuits Syst. Video Technol. 11(4), 475–484 (2001). https://doi.org/10.1109/76.915354

    Article  Google Scholar 

  5. Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a center/surround Retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997). https://doi.org/10.1109/83.557356

    Article  Google Scholar 

  6. Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997). https://doi.org/10.1109/83.597272

    Article  Google Scholar 

  7. McCann J.: Lessons learned from Mondrians applied to real images and color Gamuts. In: Color and imaging conference (1999)

  8. Funt B., Ciurea F., McCann J.: Retinex in Matlab. In: Color and Imaging Conference (2000), 8th Color and Imaging Conference Final Program and Proceedings, pp. 112–121 (10)

  9. McCartney, E.J., Hall, F.: Optics of the atmosphere: scattering by molecules and particles. Phys. Today 30, 76–77 (1976). https://doi.org/10.1063/1.3037551

    Article  Google Scholar 

  10. Narasimhan, S.G., Nayar, S.K.: Interactive (de) weathering of an image using physical models. Proc. IEEE Workshop Colour Photom Methods Comput Vis 6, 1–8 (2003)

  11. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011). https://doi.org/10.1109/cvprw.2009.5206515

    Article  Google Scholar 

  12. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016). https://doi.org/10.1109/TIP.2016.2598681

    Article  MathSciNet  MATH  Google Scholar 

  13. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.H.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds) Computer Vision - ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9906. Springer, Cham. https://doi.org/10.1007/978-3-319-46475-6_10

  14. Zhao, X., Wang, K., Li, Y., Li, J.: Deep fully convolutional regression networks for single image haze removal. In: 2017 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4 (2017). https://doi.org/10.1109/VCIP.2017.8305035

  15. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: An all-in-one network for dehazing and beyond. Comput. Vis. Pattern Recogn. (cs. CV), Artif. Intell. (cs. AI) (2017). arXiv:1707.06543 [cs.CV]

  16. Ren, W., Ma, L., Zhang, J., Pan, J., Cao, X., Liu, W., Yang, M.H.: Gated fusion network for single image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), pp 3253–3261. arXiv:1804.00213 [cs.CV]

  17. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), pp. 3194–3203. arXiv:1803.08396 [cs.CV]

  18. Chen, D., He, M., Fan, Q., Liao, J., Zhang, L., Hou, D., Yuan, L., Hua, G.: Gated context aggregation network for image dehazing and deraining. In: 2019 IEEE winter conference on applications of computer vision (WACV), (2019), pp. 1375–1383. https://doi.org/10.1109/WACV.2019.00151

  19. Tan, R.T., Visibility in bad weather from a single image. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008), 24–26 June 2008. IEEE, Anchorage, Alaska, USA (2008). https://doi.org/10.1109/CVPR.2008.4587643

  20. Fattal, R.: Single image dehazing. Acm Trans. Gr. 27(3), 1–9 (2008). https://doi.org/10.1145/1360612.1360671

  21. Gibson, K.B., Vo, D.T., Nguyen, T.Q.: An investigation of dehazing effects on image and video coding. IEEE Trans. Image Process. 21(2), 662–673 (2012). https://doi.org/10.1109/TIP.2011.2166968

    Article  MathSciNet  MATH  Google Scholar 

  22. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013). https://doi.org/10.1109/TPAMI.2012.213

  23. Tarel J., Hautière N.: Fast visibility restoration from a single color or gray level image. In: 2009 IEEE 12th International Conference on Computer Vision (2009), pp. 2201–2208. https://doi.org/10.1109/ICCV.2009.5459251

  24. Tarel, J., Hautière, N., Caraffa, L., Cord, A., Halmaoui, H., Gruyer, D.: Vision enhancement in homogeneous and heterogeneous fog. IEEE Intell. Transp. Syst. Mag. 4(2), 6–20 (2012). https://doi.org/10.1109/MITS.2012.2189969

    Article  Google Scholar 

  25. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 228–242 (2008). https://doi.org/10.1109/TPAMI.2007.1177

    Article  Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Computer Vision and Pattern Recognition (cs. CV) (2015). arXiv:1409.1556 [cs.CV]

  27. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation, In: Navab N., Hornegger J., Wells W., Frangi A. (eds) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28

  28. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in neural information processing systems, 27 (NIPS 2014)

  29. Zheng Z., Ren W., Cao X., Hu X., Wang T., Song F., Jia X.: Ultra-high-definition image dehazing via multi-guided bilateral learning. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16180–16189 (2021). https://doi.org/10.1109/CVPR46437.2021.01592

  30. Kingma, D.P., Ba, J., Adam: a method for stochastic optimization. Mach. Learn. (cs. LG), (2015), arXiv:1412.6980 [cs.LG]

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant No. 32071680).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xixuan Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (docx 90 KB)

Supplementary file 2 (log 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Y., Zhao, X. & Kan, J. An end-to-end single image dehazing network based on U-net. SIViP 16, 1739–1746 (2022). https://doi.org/10.1007/s11760-021-02129-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-02129-4

Keywords

Navigation