Abstract
Polarimetric synthetic radar (PolSAR) images contain a huge volume of polarimetric and spatial features, which can be useful for class discrimination. A nonparametric PolSAR classification method called collaborative representation based nearest subspace (CRNS) is proposed in this paper. CRNS simultaneously removes speckle noise and extracts polarimetric-spatial features in two successive stages. At first, it obtains the collaborative representation of the polarimetric cube. Then, it extracts more continuity information from the neighboring pixels through spatial averaging. The extracted polarimetric-spatial feature cube is then classified by using a regularized version of the nearest subspace classifier. The experimental results on two simulated and real PolSAR images show the superior performance of CRNS compared to other state-of-the-art classifiers in both small and large training sets.




Similar content being viewed by others
References
Liu, G., Li, Y., Jiao, L., Chen, Y., Shang, R.: Multiobjective evolutionary algorithm assisted stacked autoencoder for PolSAR image classification. Swarm. Evolut. Comput. 60(6), 100794 (2021). https://doi.org/10.1016/j.swevo.2020.100794
Fan, C., Hu, Z., Jia, L., et al.: A novel lossless compression encoding framework for SAR remote sensing images. Signal Image Video Process. 15, 441–448 (2021)
Yang, R., Hu, Z., Liu, Y., Xu, Z.: A novel polarimetric SAR classification method integrating pixel-based and patch-based classification. IEEE Geosci. Remote Sens. Lett. 17(3), 431–435 (2020)
Zhang, Z., Wang, H., Xu, F., Jin, Y.: Complex-valued convolutional neural network and its application in polarimetric SAR image classification. IEEE Trans. Geosci. Remote Sens. 55(12), 7177–7188 (2017)
Geng, J., Wang, H., Fan, J., Ma, X.: SAR image classification via deep recurrent encoding neural networks. IEEE Trans. Geosci. Remote Sens. 56(4), 2255–2269 (2018)
Phruksahiran, N.: Potential performance of polarimetric reference function of SAR data processing by coherent target decomposition. Signal Image Video Process. 15, 1021–1029 (2021)
Gokdag, U., Bilgin, G.: SAR image classification post-processing with multiscale complementary Gaussian kernel weighting. Signal Image Video Process. 15, 1425–1433 (2021). https://doi.org/10.1007/s11760-021-01874-w
Youssef, S.M.: ICTEDCT-CBIR: Integrating curvelet transform with enhanced dominant colors extraction and texture analysis for efficient content-based image retrieval. Comput. Electr. Eng. 38(5), 1358–1376 (2012)
Kowkabi, F., Keshavarz, A.: Using spectral Geodesic and spatial Euclidean weights of neighbourhood pixels for hyperspectral Endmember Extraction preprocessing. ISPRS J. Photogramm. Remote Sens. 158, 201–218 (2019)
Cao, J., Wang, S., Wang, R., Zhang, X., Kwong, S.: Content-oriented image quality assessment with multi-label SVM classifier. Signal Process. Image Commun. 78, 388–397 (2019)
Li, W., Tramel, E.W., Prasad, S., Fowler, J.E.: Nearest regularized subspace for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 52(1), 477–489 (2014)
Li, J., Huang, X., Gamba, P., Bioucas-Dias, J.M., Zhang, L., Benediktsson, J.A., Plaza, A.: Multiple feature learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 53(3), 1592–1606 (2015)
Li, J., Marpu, P., Plaza, A., Bioucas-Dias, J., Benediktsson, J.A.: Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 51(9), 4816–4829 (2013)
Li, W., Du, Q.: Joint within-class collaborative representation for hyperspectral image classification. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 7(6), 2200–2208 (2014)
Xiong, M., Ran, Q., Li, W., Zou, J., Du, Q.: Hyperspectral image classification using weighted joint collaborative representation. IEEE Geosci. Remote Sens. Lett. 12(6), 1209–1213 (2015)
Zhang, R., Zhang, M.: SAR target recognition based on active contour without edges. J. Syst. Eng. Electron. 28(2), 276–281 (2017)
Sukawattanavijit, C., Chen, J., Zhang, H.: GA-SVM algorithm for improving land-cover classification using SAR and optical remote sensing data. IEEE Geosci. Remote Sens. Lett. 14(3), 284–288 (2017)
Guan, D., Xiang, D., Dong, G., Tang, T., Tang, X., Kuang, G.: SAR image classification by exploiting adaptive contextual information and composite kernels. IEEE Geosci. Remote Sens. Lett. 15(7), 1035–1039 (2018)
Cao, X., Ji, Y., Wang, L., Ji, B., Jiao, L., Han, J.: SAR image change detection based on deep denoising and CNN. IET Image Proc. 13, 1509–1515 (2019)
Shen, H., Lin, L., Li, J., Yuan, Q., Zhao, L.: A residual convolutional neural network for polarimetric SAR image super-resolution. ISPRS J. Photogramm. Remote Sens. 161, 90–108 (2020)
Imani, M., Ghassemian, H.: Feature space discriminant analysis for hyperspectral data feature reduction. ISPRS J. Photogramm. Remote Sens. 102, 1–13 (2015)
Divya, S.V., Paul, S., Pati, U.C.: Structure tensor-based SIFT algorithm for SAR image registration. IET Image Proc. 14, 929–938 (2020)
Fu, B., Wang, Y., Campbell, A., Li, Y., Zhang, B., Yin, S., Xing, Z., Jin, X.: Comparison of object-based and pixel-based Random Forest algorithm for wetland vegetation mapping using high spatial resolution GF-1 and SAR data. Ecol. Ind. 73, 105–117 (2017)
Imani, M., Ghassemian, H.: Weighted Joint collaborative representation based on median-mean line and angular separation. IEEE Trans. Geosci. Remote Sens. 55(10), 5612–5624 (2017)
Wang, H., Shi, J.: SAR image segmentation algorithm based on Contourlet domain AFMRF model. IET Image Proc. 12, 1124–1130 (2018)
Fernando, L., Ruiz, C., Simioni, J.P., Belloli, T.F., Fernandes, P.C.B., Guasselli, L.A.: Object-based classification of vegetation species in a subtropical wetland using Sentinel-1 and Sentinel-2A images. Sci. Remote Sens. 3, 100017 (2021). https://doi.org/10.1016/j.srs.2021.100017
Gomez, L., Alvarez, L., Mazorra, L., Frery, A.C.: Fully PolSAR image classification using machine learning techniques and reaction-diffusion systems. Neurocomputing 255, 52–60 (2017)
Available in https://earth.esa.int/web/polsarpro/data-sources/sample-datasets, Accessed from Nov 2019
Imani, M., Ghassemian, H.: Binary coding based feature extraction in remote sensing high dimensional data. Inf. Sci. 342, 191–208 (2016)
Cohen, J.: A coefficient of agreement from nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960)
Foody, G.M.: Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogramm. Eng. Remote Sens. 70, 627–633 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Imani, M. Polarimetric SAR image classification using collaborative representation based nearest subspace. SIViP 16, 1577–1585 (2022). https://doi.org/10.1007/s11760-022-02140-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-022-02140-3