Skip to main content

Boosting color similarity decisions using the CIEDE2000_PF Metric

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Color comparison is a key aspect in many areas of application, including industrial applications, and different metrics have been proposed. In many applications, this comparison is required to be closely related to human perception of color differences, thus adding complexity to the process. To tackle this, different approaches were proposed through the years, culminating in the CIEDE2000 formulation. In our previous work, we showed that simple color properties could be used to reduce the computational time of a color similarity decision process that employed this metric, which is recognized as having high computational complexity. In this paper, we show mathematically and experimentally that these findings can be adapted and extended to the recently proposed CIEDE2000 PF metric, which has been recommended by the CIE for industrial applications. Moreover, we propose new efficient models that not only achieve lower error rates, but also outperform the results obtained for the CIEDE2000 metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ancuti, C.O., Ancuti, C., Sbert, M., Timofte, R.: Dense haze: a benchmark for image dehazing with dense-haze and haze-free images. arXiv preprint arXiv:1904.02904 (2019)

  2. Blaznik, B., Bračko, S.: Study of ink jet print resistance using various colour difference formulas. Tehnički vjesnik 26(1), 243–247 (2019)

    Google Scholar 

  3. Czigola, A., Abram, E., Kovacs, Z.I., Marton, K., Hermann, P., Borbely, J.: Effects of substrate, ceramic thickness, translucency, and cement shade on the color of CAD/CAM lithium-disilicate crowns. J. Esthet. Restor. Dent. 31(5), 457–464 (2019)

    Article  Google Scholar 

  4. Refsnes Data. Color Names Supported by All Browsers. Accessed 3 June 2020

  5. D’Orazio, T., Leo, M., Mosca, N., Spagnolo, P., Mazzeo, P.L.: A semi-automatic system for ground truth generation of soccer video sequences. In: 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 559–564. IEEE (2009)

  6. Fisher, R. Caviar dataset (2004)

  7. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  Google Scholar 

  8. Griffin, G., Holub, A., Perona P.: Caltech-256 object category dataset. CalTech Report, 03 (2007)

  9. Huang, M., Cui, G., Melgosa, M., Sánchez-Maranón, M., Li, C., Luo, M.R., Liu, H.: Power functions improving the performance of color-difference formulas. Opt. Express 23(1), 597–610 (2015)

    Article  Google Scholar 

  10. Kang, H.R.: Computational Color Technology. Spie Press, Bellingham (2006)

    Book  Google Scholar 

  11. Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M., Kolesnikov, A., et al.: The open images dataset v4. Int. J. Comput. Vis. 18, 1–26 (2020)

    Google Scholar 

  12. Luo, M.R., Cui, G., Rigg, B.: The development of the CIE 2000 colour-difference formula: Ciede 2000. Color Res. Appl. 26(5), 340–350 (2001)

    Article  Google Scholar 

  13. McDonald, R., Smith, K.J.: Cie94-a new colour-difference formula. J. Soc. Dyers Colour. 111(12), 376–379 (1995)

    Article  Google Scholar 

  14. Montiel, J., Mitchell, R., Frank, E., Pfahringer, B., Abdessalem, T., Bifet A.: Adaptive XGBoost for evolving data streams. arXiv preprint arXiv:2005.07353 (2020)

  15. Murillo, M.A., Rodríguez-Pulido, F.J., Heredia, F.J., Melgosa, M., Pacheco, J., Vargas, R., Montero, E., Gutiérrez, D.: Color evolution during a coating process of pharmaceutical tablet cores by random spraying. Color Res. Appl. 44(2), 160–167 (2019)

    Article  Google Scholar 

  16. Nene, S.A., Nayar, S.K., Murase, H.: Object image library (coil-100) (1996)

  17. Ouyang, W., Xu, B., Yuan, X.: Color segmentation in multicolor images using node-growing self-organizing map. Color Res. Appl. 44(2), 184–193 (2019)

    Article  Google Scholar 

  18. Paravina, R., Sanchez, N.P., Ghinea, R.I., Powers, J.: Colorimetric (ciede2000) comparison between two shade guides used for visual evaluation of tooth whitening efficacy. Srpski arhiv za celokupno lekarstvo 147, 6 (2019)

    Article  Google Scholar 

  19. Pereira, A., Carvalho, P., Coelho, G., Côrte-Real, L.: Efficient ciede2000-based color similarity decision for computer vision. IEEE Trans. Circuits Syst. Video Technol. 56, 1 (2019)

    Article  Google Scholar 

  20. Pérez, M.M., Herrera, L.J., Carrillo, F., Pecho, O.E., Dudea, D., Gasparik, C., Ghinea, R., Della Bona, A.: Whiteness difference thresholds in dentistry. Dent. Mater. 35(2), 292–297 (2019)

    Article  Google Scholar 

  21. Richter, K., Bračko, S., Cui, G., Luo, M.R., Melgosa, M., Seim, T.: Validity of formulae for predicting small colour differences. Technical report, CIE, International Commision on Illumination. CIE 230:2019 (2019)

  22. Robertson, Alan R.: The CIE 1976 color-difference formulae. Color Res. Appl. 2(1), 7–11 (1977)

    Article  Google Scholar 

  23. Viana, P., Carvalho, P., Andrade, M.T., Jonker, P.P., Papanikolaou, V., Teixeira, I.N., Vilaça, L., Pinto, J.P., Costa, T.: Semantic storytelling automation: a context-aware and metadata-driven approach. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 4491–4493 (2020)

  24. Wu, H.-T., Wu, Y., Guan, Z., Cheung, Y.: Lossless contrast enhancement of color images with reversible data hiding. Entropy 21(9), 910 (2019)

    Article  MathSciNet  Google Scholar 

  25. Yang, Y., Ming, J., Yu, N.: Color image quality assessment based on ciede2000. Adv. Multimedia 2012, 11 (2012)

    Google Scholar 

  26. Young, D.P., Ferryman, J.M.: Pets metrics: on-line performance evaluation service. In: 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 317–324. IEEE (2005)

Download references

Acknowledgements

This work was partially funded by the project FotoInMotion (GA: 780612) funded by H2020 Framework Programme of the European Commission and also by Fundação para a Ciência e Tecnologia (FCT) with PhD Grant SFRH/BD/146400/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Américo Pereira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, A., Carvalho, P. & Côrte-Real, L. Boosting color similarity decisions using the CIEDE2000_PF Metric. SIViP 16, 1877–1884 (2022). https://doi.org/10.1007/s11760-022-02147-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02147-w

Keywords