Skip to main content
Log in

Motion-aware future frame prediction for video anomaly detection based on saliency perception

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The anomaly in videos can be considered as a deviation from regular video sequences. Most existing approaches neglect the imbalanced information distribution between the foreground and the background during the process of reconstruction or prediction. To address this problem, we propose a motion-aware future frame prediction network consisting of a frame prediction branch and a saliency perception branch. In particular, the saliency perception branch is designed to predict the most salient targets in the video frame, and the frame prediction branch is used to predict the RGB future frame with the guidance of saliency perception. Besides, a motion-aware attention module is bridged in the frame prediction branch to improve the representation ability of moving targets. Furthermore, a saliency prediction loss and a saliency-guided appearance loss are designed to optimize saliency prediction frames and constrain the weight of foreground. Experiments on three challenging benchmarks demonstrate our competitive performance with the state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Piciarelli, C., Micheloni, C., Foresti, G.L.: Trajectory-based anomalous event detection. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1544–1554 (2008)

    Article  Google Scholar 

  2. Wu, S., Moore, B.E., Shah, M.: Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2054–2060. IEEE (2010)

  3. Shifeng, L., Chunxiao, L., Yuqiang, Y.: Anomaly detection based on sparse coding with two kinds of dictionaries. SIViP 12(5), 983–989 (2018)

    Article  Google Scholar 

  4. Gong, D., Liu, L., Le, V., Saha, B., Mansour, M.R., Venkatesh, S., Hengel, A.v.d.: Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1705–1714 (2019)

  5. Park, H., Noh, J., Ham, B.: Learning memory-guided normality for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14372–14381 (2020)

  6. Luo, W., Liu, W., Gao, S.: A revisit of sparse coding based anomaly detection in stacked rnn framework. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 341–349 (2017)

  7. Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection–a new baseline. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6536–6545 (2018)

  8. Zhou, J.T., Zhang, L., Fang, Z., Du, J., Peng, X., Xiao, Y.: Attention-driven loss for anomaly detection in video surveillance. IEEE Trans. Circuits Syst. Video Technol. 30(12), 4639–4647 (2019)

    Article  Google Scholar 

  9. Nguyen, T.N., Meunier, J.: Anomaly detection in video sequence with appearance-motion correspondence. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1273–1283 (2019)

  10. Tang, Y., Zhao, L., Zhang, S., Gong, C., Li, G., Yang, J.: Integrating prediction and reconstruction for anomaly detection. Pattern Recogn. Lett. 129, 123–130 (2020)

    Article  Google Scholar 

  11. Tung, F., Zelek, J.S., Clausi, D.A.: Goal-based trajectory analysis for unusual behaviour detection in intelligent surveillance. Image Vis. Comput. 29(4), 230–240 (2011)

    Article  Google Scholar 

  12. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893. Ieee (2005)

  13. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: European Conference on Computer Vision, pp. 428–441. Springer (2006)

  14. Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 fps in matlab. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2720–2727 (2013)

  15. Yu, G., Wang, S., Cai, Z., Zhu, E., Xu, C., Yin, J., Kloft, M.: Cloze test helps: Effective video anomaly detection via learning to complete video events. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 583–591 (2020)

  16. Xu, D., Ricci, E., Yan, Y., Song, J., Sebe, N.: Learning deep representations of appearance and motion for anomalous event detection. arXiv preprint arXiv:1510.01553 (2015)

  17. Luo, W., Liu, W., Gao, S.: Remembering history with convolutional lstm for anomaly detection. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 439–444. IEEE (2017)

  18. Nogas, J., Khan, S.S., Mihailidis, A.: Deepfall: non-invasive fall detection with deep spatio-temporal convolutional autoencoders. J. Healthcare Inform. Res. 4(1), 50–70 (2020)

    Article  Google Scholar 

  19. Lu, Y., Kumar, K.M., shahabeddin Nabavi, S., Wang, Y.: Future frame prediction using convolutional vrnn for anomaly detection. In: 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–8. IEEE (2019)

  20. Zhong, J.X., Li, N., Kong, W., Liu, S., Li, T.H., Li, G.: Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1237–1246 (2019)

  21. Liu, K., Ma, H.: Exploring background-bias for anomaly detection in surveillance videos. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1490–1499 (2019)

  22. Morais, R., Le, V., Tran, T., Saha, B., Mansour, M., Venkatesh, S.: Learning regularity in skeleton trajectories for anomaly detection in videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11996–12004 (2019)

  23. Zivkovic, Z., Van Der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27(7), 773–780 (2006)

    Article  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer (2015)

  25. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van Der Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)

  26. Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1975–1981. IEEE (2010)

  27. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 733–742 (2016)

  28. Abati, D., Porrello, A., Calderara, S., Cucchiara, R.: Latent space autoregression for novelty detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 481–490 (2019)

  29. Zhou, J.T., Du, J., Zhu, H., Peng, X., Liu, Y., Goh, R.S.M.: Anomalynet: an anomaly detection network for video surveillance. IEEE Trans. Inf. Forensics Secur. 14(10), 2537–2550 (2019)

    Article  Google Scholar 

  30. Deepak, K., Chandrakala, S., Mohan, C.K.: Residual spatiotemporal autoencoder for unsupervised video anomaly detection. SIViP 15(1), 215–222 (2021)

    Article  Google Scholar 

  31. Kangwei, L., Jianhua, W., Zhongzhi, H.: Abnormal event detection and localization using level set based on hybrid features. SIViP 12(2), 255–261 (2018)

    Article  Google Scholar 

  32. Zhao, Y., Deng, B., Shen, C., Liu, Y., Lu, H., Hua, X.S.: Spatio-temporal autoencoder for video anomaly detection. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1933–1941 (2017)

Download references

Acknowledgements

This research is partially supported by the Beijing Natural Science Foundation (No. 4212025), National Natural Science Foundation of China (Nos. 61876018, 61906014, 61976017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Liu, W., Xing, W. et al. Motion-aware future frame prediction for video anomaly detection based on saliency perception. SIViP 16, 2121–2129 (2022). https://doi.org/10.1007/s11760-022-02174-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02174-7

Keywords

Navigation