Skip to main content
Log in

Parameters estimation of linear frequency modulated signal using Kalman filter and its extended versions

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The problem of linear frequency modulated (LFM) or chirp signal analysis is proposed in this paper. It is considered as an estimation theory problem in which the LFM parameters are underestimated in the presence of Gaussian noise. The proposed approach is based on the signal state-space model extraction and application of different versions of the Kalman filter. Since the state-space model of this problem is nonlinear, the standard Kalman filter cannot be utilized directly, so other versions of the Kalman filter should be used. The recently proposed, iterated extended Kalman filter (IEKF), unscented Kalman filter (UKF), and iterated unscented Kalman filter (IUKF) are suggested as solutions of the stated problem. Compared with the traditional Kalman filter methods, i.e., the Kalman filter based on the Tretter approximation and the extended Kalman filter (EKF), the proposed methods have advantages in estimation performance and convergence. Finally, the numerical simulations are given to show the capability of proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang, H., Liao, G., Xu, J., Zhu, S.: Transmit beampattern design for coherent FDA by piecewise LFM waveform. Signal Process. 161, 14–24 (2019). https://doi.org/10.1016/j.sigpro.2019.03.010

    Article  Google Scholar 

  2. Zhang, Y., Chen, X., Xu, H., Zhang, X.-P., Qi, F.: Fast acceleration and velocity estimation for wideband stretching LFM radars based on mutual bias correction. IEEE Sens. J. 20(15), 8683–8697 (2020)

    Article  Google Scholar 

  3. Atkins, P.R., Collins, T., Foote, K.G.: Transmit-signal design and processing strategies for sonar target phase measurement. IEEE J. Sel. Top. Signal Process. 1(1), 91–104 (2007)

    Article  Google Scholar 

  4. Datta, T., Eshwaraiah, H.S., Chockalingam, A.: Generalized space-and-frequency index modulation. IEEE Trans. Veh. Technol. 65(7), 4911–4924 (2016). https://doi.org/10.1109/TVT.2015.2451095

    Article  Google Scholar 

  5. Engels, F., Heidenreich, P., Zoubir, A.M., Jondral, F.K., Wintermantel, M.: Advances in automotive radar: a framework on computationally efficient high-resolution frequency estimation. IEEE Signal Process. Mag. 34(2), 36–46 (2017)

    Article  Google Scholar 

  6. Fourer, D., Auger, F., Czarnecki, K., Meignen, S., Flandrin, P.: Chirp rate and instantaneous frequency estimation: application to recursive vertical synchrosqueezing. IEEE Signal Process. Lett. 24(11), 1724–1728 (2017)

    Article  Google Scholar 

  7. Serbes, A.: On the estimation of LFM signal parameters: analytical formulation. IEEE Trans. Aerosp. Electron. Syst. 54(2), 848–860 (2017)

    Article  Google Scholar 

  8. Aldimashki, O., Serbes, A.: Performance of chirp parameter estimation in the fractional fourier domains and an algorithm for fast chirp-rate estimation. IEEE Trans. Aerosp. Electron. Syst. 1, 1 (2020)

    Google Scholar 

  9. Abatzoglou, T.J.: Fast maximnurm likelihood joint estimation of frequency and frequency rate. IEEE Trans. Aerosp. Electron. Syst. 6, 708–715 (1986)

    Article  Google Scholar 

  10. Jensen, T.L., er Nielsen, J.K., Jensen, J.R.: A fast algorithm for maximum-likelihood estimation of harmonic chirp parameters. IEEE Trans. Signal Process. 65(19), 5137–5152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Djuric, P.M., Kay, S.M.: Parameter estimation of chirp signals. IEEE Trans. Acoust. Speech Signal Process. 38(12), 2118–2126 (1990)

    Article  Google Scholar 

  12. Wang, P., Li, H., Djurović, I., Himed, B.: Integrated cubic phase function for linear FM signal analysis. IEEE Trans. Aerosp. Electron. Syst. 46(3), 963–977 (2010)

    Article  Google Scholar 

  13. Li, D., Zhan, M., Su, J., Liu, H., Zhang, X., Liao, G.: Performances analysis of coherently integrated CPF for LFM signal under low SNR and its application to ground moving target imaging. IEEE Trans. Geosci. Rem. Sens. 55(11), 6402–6419 (2017)

    Article  Google Scholar 

  14. Serbes, A., Aldimashki, O.: A fast and accurate chirp rate estimation algorithm based on the fractional Fourier transform. In: 2017 25th European Signal Processing Conference (EUSIPCO), 2017, pp. 1105–1109.

  15. Su, H., Bao, Q., Chen, Z.: Parameter estimation processor for chirp signals based on a complex-valued deep neural network. IEEE Access 7, 176278–176290 (2019)

    Article  Google Scholar 

  16. Haykin, S.S.: Kalman Filtering and Neural Networks. Wiley Online Library (2001).

  17. Kay, S.M.: Fundamentals of Statistical Signal Processing. Prentice Hall PTR (1993).

  18. Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley (2006).

  19. Gal, J., Câmpeanu, A., Nafornita, I.: Estimation of chirp signals in Gaussian noise by Kalman filtering. Int. Symp. Signals Circuits Syst. 1, 1–4 (2007)

    Google Scholar 

  20. Kaakour, W.E., Guglielmi, M., Piasco, J.M., Le Carpentier, E.: Two identification methods of chirp parameters using state space model. In: 13th International Conference on Digital Signal Processing. DSP 97, vol. 2, pp. 903–906 (1997).

  21. Tretter, S.: Estimating the frequency of a noisy sinusoid by linear regression (Corresp.). IEEE Trans. Inf. Theory 31(6), 832–835 (1985)

    Article  Google Scholar 

  22. Gal, J., Câmpeanu, A., Naforniţă, I.: Identification of polynomial phase signals by Extended Kalman Filtering. In Signal Processing Conference, 2008 16th European, pp. 1–5 (2008).

  23. Gál, J., Câmpeanu, A., Nafornită, I.: The estimation of chirp signals parameters by an extended Kalman filtering algorithm. In: 10th International Symposium on Signals, Circuits and Systems (ISSCS), 2011, pp. 1–4 (2011).

  24. Adjrad, M., Belouchrani, A.: Estimation of multicomponent polynomial-phase signals impinging on a multisensor array using state–space modeling. IEEE Trans. Signal Process. 55(1), 32–45 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Adjrad, M., Beloucharni, A., Ouldali, A.: Estimation of chirp signal parameters using state space modelization by incorporating spatial information. In: Proceedings of Seventh International Symposium on Signal Processing and Its Applications, vol. 2, pp. 531–534 (2003).

  26. Zhan, R., Wan, J.: Iterated unscented Kalman filter for passive target tracking. IEEE Trans. Aerosp. Electron. Syst. 43(3), 1155–1163 (2007)

    Article  Google Scholar 

  27. Rouhani, A., Abur, A.: Constrained iterated unscented Kalman filter for dynamic state and parameter estimation. IEEE Trans. Power Syst. 33(3), 2404–2414 (2017)

    Article  Google Scholar 

  28. Peleg, S., Porat, B.: The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase. IEEE Trans. Signal Process. 39(3), 749–752 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Mohseni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, E., Mohseni, R. Parameters estimation of linear frequency modulated signal using Kalman filter and its extended versions. SIViP 17, 553–561 (2023). https://doi.org/10.1007/s11760-022-02260-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02260-w

Keywords

Navigation