Skip to main content

Advertisement

Log in

Magnification-specific and magnification-independent classification of breast cancer histopathological image using deep learning approaches

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Breast cancer (BC) is a massive health problem and a deadly disease, killing millions of people every year. Computerized approaches for automated malignant BC detection can efficiently help in reducing the manual workload of pathologists and making diagnosis more scalable and less prone to errors. In this paper, we present two systems to diagnose breast cancer from single and multi-magnification histopathological images. The first proposed system utilizes a pre-trained DenseNet201 CNN architecture and fine-tuned over the publicly available BreakHis dataset and classifies histopathological images of specific magnification factors into one of the benign or malignant classes. The second system consists of four subsystems, each corresponding to one of the magnifications, and is trained only by related magnification images. Afterwards, the results obtained from these four subsystems are fused together to make the final decision. Several experiments on BreakHis dataset demonstrate that the proposed systems outperform the state-of-the-art approaches, in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boyle, P., Levin, B. (Eds).: World Cancer Report. Lyon: IARC, 2008. [Online]. Available: https://publications.iarc.fr/_publications/media/download/4083/0d98fe6c30034ada27810fc3049ece916392c163.pdf (2008)

  2. Joy, J.E., Penhoet, E.E., Petitti, D.B., Institute of Medicine (US) and National Research Council (US) Committee on New Approaches to Early Detection and Diagnosis of Breast Cancer (Eds.).: Saving Women's Lives: Strategies for Improving Breast Cancer Detection and Diagnosis. National Academies Press (US). (2005)

  3. Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B.: Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147–171 (2009)

    Article  Google Scholar 

  4. Désir, C., Petitjean, C., Heutte, L., Salaun, M., Thiberville, L.: Classification of endomicroscopic images of the lung based on random subwindows and extra-trees. IEEE Trans. Biomed. Eng. 59(9), 2677–2683 (2012)

    Article  Google Scholar 

  5. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Sánchez, C.I.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  6. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.:. Breast cancer histopatho- logical image classification using convolutional neural networks. In: international joint conference on neural networks (IJCNN), pp. 2560–2567. IEEE. (2016)

  7. LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.E., Jackel, L.D.: Handwritten digit recognition with a back-propagation network. Adv. Neural Inf. Process. Syst. 2, 396–404 (1990)

    Google Scholar 

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: 2012 AlexNet. Adv. Neural Inf. Process. Syst., 1–9. (2012)

  9. Samah, A.A., Fauzi, M.F.A., Mansor, S.: Classification of benign and malignant tumors in histopathology images. In: IEEE international conference on signal and image processing applications (ICSIPA), pp. 102- 106. IEEE. (2017)

  10. Kahya, M.A., Al-Hayani, W., Algamal, Z.Y.: Classification of breast cancer histopathology images based on adaptive sparse support vector machine. J. Appl. Math. Bioinf. 7(1), 49 (2017)

    Google Scholar 

  11. Liao, C., Li, S., Luo, Z.: Gene selection using wilcoxon rank sum test and support vector machine for cancer classification. In: international conference on computational and information science, pp. 57–66. Springer, Berlin, Heidelberg. (2006)

  12. Benhammou, Y., Achchab, B., Herrera, F., Tabik, S.: BreakHis based breast cancer automatic diagnosis using deep learning: taxonomy, survey and insights. Neurocomputing 375, 9–24 (2020)

    Article  Google Scholar 

  13. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A.: Going deeper with convolutions. In: proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9. (2015)

  14. Benhammou, Y., Tabik, S., Achchab, B., Herrera, F.: A first study exploring the performance of the state-of-the art CNN model in the problem of breast cancer. In: proceedings of the international conference on learning and optimization algorithms: theory and applications, pp. 1–6. Morocco (2018)

  15. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: A deep convolutional activation feature for generic visual recognition. In: international conference on machine learning, pp. 647–655. (2014)

  16. Deniz, E., Şengür, A., Kadiroğlu, Z., Guo, Y., Bajaj, V., Budak, Ü.: Transfer learning based histopathologic image classification for breast cancer detection. Health Inf. Sci. Syst. 6(1), 1–7 (2018)

    Article  Google Scholar 

  17. Badejo, J.A., Adetiba, E., Akinrinmade, A., Akanle, M.B.: Medical image classification with hand-designed or machine-designed texture descriptors: a performance evaluation. In: international conference on bioinformatics and biomedical engineering, pp. 266–275. Springer, Cham. (2018)

  18. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462 (2015)

    Article  Google Scholar 

  19. Taheri, S., Toygar, Ö.: On the use of DAG-CNN architecture for age estimation with multi-stage features fusion. Neurocomputing 329, 300–310 (2019)

    Article  Google Scholar 

  20. Golrizkhatami, Z., Acan, A.: ECG classification using three-level fusion of different feature descriptors. Expert Syst. Appl. 114, 54–64 (2018)

    Article  Google Scholar 

  21. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. IEEE (2009)

  22. Gupta, V., Bhavsar, A.: An integrated multi-scale model for breast cancer histopathological image classification with joint colour-texture features. In: international conference on computer analysis of images and patterns, pp. 354–366. Springer, Cham. (2017)

  23. Taheri, S., Toygar, Ö.: Multi-stage age estimation using two level fusions of handcrafted and learned features on facial images. IET Biometrics 8(2), 124–133 (2018)

    Article  Google Scholar 

  24. Simonyan, K., Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. (2014)

  25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. Computer Science. (2015)

  26. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708. (2017)

  27. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258. IEEE (2017)

  28. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8697–8710. (2018)

  29. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: proceedings of the AAAI conference on artificial intelligence, vol 31, No. 1.(2017)

  30. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4510–4520. (2018)

  31. Spanhol, F.A., Oliveira, L.S., Cavalin, P.R., Petitjean, C., Heutte, L.:. Deep features for breast cancer histopathological image classification. In: IEEE international conference on systems, man, and cybernetics (SMC), pp. 1868–1873. IEEE. (2017)

  32. Song, Y., Zou, J.J., Chang, H., Cai, W.: Adapting fisher vectors for histopathology image classification. In: 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017), pp. 600–603. IEEE. (2017)

  33. Kumar, K., Rao, A. C. S.: Breast cancer classification of image using convolutional neural network. In: 4th international conference on recent advances in information technology (RAIT), pp. 1–6. IEEE. (2018)

  34. Sanchez-Morillo, D., González, J., García-Rojo, M., Ortega, J.: Classification of breast cancer histopathological images using KAZE features. In: international conference on bioinformatics and biomedical engineering, pp. 276–286. Springer, Cham. (2018)

  35. Sudharshan, P.J., Petitjean, C., Spanhol, F., Oliveira, L.E., Heutte, L., Honeine, P.: Multiple instance learning for histopathological breast cancer image classification. Expert Syst. Appl. 117, 103–111 (2019)

    Article  Google Scholar 

  36. Song, Y., Chang, H., Huang, H., Cai, W.: Supervised intra-embedding of fisher vectors for histopathology image classification. In: international conference on medical image computing and computer-assisted intervention, pp. 99–106. Springer, Cham. (2017)

  37. Bayramoglu, N., Kannala, J., Heikkilä, J.: Deep learning for magnification independent breast cancer histopathology image classification. In: 23rd international conference on pattern recognition (ICPR), pp. 2440–2445. IEEE. (2016)

  38. Gupta, V., Bhavsar, A.: Breast cancer histopathological image classification: is magnification important?. In: proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 17–24. (2017)

  39. Zhang, Z., Chen, B., Xu, S., Chen, G., Xie, J.: A novel voting convergent difference neural network for diagnosing breast cancer. Neurocomputing 437, 339–350 (2021)

    Article  Google Scholar 

  40. Boumaraf, S., Liu, X., Wan, Y., Zheng, Z., Ferkous, C., Ma, X., Bardou, D.: Conventional machine learning versus deep learning for magnification dependent histopathological breast cancer image classification: a comparative study with visual explanation. Diagnostics 11(3), 528 (2021)

    Article  Google Scholar 

  41. Hameed, Z., Zahia, S., Garcia-Zapirain, B., Javier Aguirre, J., María Vanegas, A.: Breast cancer histopathology image classification using an ensemble of deep learning models. Sensors 20(16), 4373 (2020)

    Article  Google Scholar 

  42. Sharma, S., Mehra, R.: Conventional machine learning and deep learning approach for multi-classification of breast cancer histopathology images—a comparative insight. J. Digit. Imaging 33(3), 632–654 (2020)

    Article  Google Scholar 

  43. Zhang, Z., Chen, G., Yang, S.: Ensemble support vector recurrent neural network for brain signal detection. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3083710

    Article  Google Scholar 

  44. Zhang, Z., Chen, B., Sun, J., Luo, Y.: A bagging dynamic deep learning network for diagnosing COVID-19. Sci. Rep. 11, 16280 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Taheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, S., Golrizkhatami, Z. Magnification-specific and magnification-independent classification of breast cancer histopathological image using deep learning approaches. SIViP 17, 583–591 (2023). https://doi.org/10.1007/s11760-022-02263-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02263-7

Keywords

Navigation