Skip to main content

Advertisement

Log in

ADMM algorithm for some regularized Perona–Malik equation and applications to image denoising

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a new approach for solving the proposed variational model derived from Perona–Malik (PM) equation. This problem is the combination of P–M model and p-Laplacian operator. Our approach exploiting the different values of p (p near 1 or \(\infty \)) and using a variable contrast parameter \(\lambda \) to adaptively control the scattering pattern in the restored image. Firstly, we present the variational model, and we prove the existence and uniqueness of the minimizer. To solve numerically our problem, we apply the ADMM method to derive a robust scheme. Finally, we illustrate the effectiveness of our algorithm with various numerical tests which can compare favorably with some existing methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  2. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing, p. xxxii+377. Springer, New York (2006)

    Book  MATH  Google Scholar 

  3. Guidotti, P., Kim, Y., Lambers, J.: Image restoration with a new class of forward-backward-forward diffusion equations of Perona–Malik type with applications to satellite image enhancement. SIAM J. Imaging Sci. 6, 1416–1444 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kichenassamy, S.: The Perona–Malik paradox. SIAM J. Appl. Math. 57(5), 1328–1342 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aboulaich, R., Meskine, D., Souissi, A.: New diffusion models in image processing. Comput. Math. Appl. 56(4), 874–882 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Catte, F., Lions, P., Morel, J.M., Coll, T.: Image selective smooting and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Amann, H.: Time-delayed Perona–Malik type problems. Proc. Equdiff. 11, 15–38 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Guidotti, P.: A backward–forward regularization of the Perona–Malik equation. J. Differ. Equ. 252(4), 3226–3244 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Atlas, A., Karami, F., Meskine, D.: The Perona–Malik inequality and application to image denoising. Nonlinear Anal. Real World Appl. 18, 57–68 (2014)

  10. Fayolle, P.-A., Belyaev, A.G.: \(p\)-Laplace diffusion for distance function estimation, optimal transport approximation, and image enhancement. Comput. Aided Geom. Des. 67, 1–20 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tan, L., Li, L., An, S., Pan, Z.: Nonlinear diffusion based image segmentation using two fast algorithms. Am. Inst. Math. Sci. 2(2), 149–168 (2019)

    MATH  Google Scholar 

  12. Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction optimization methods. SIAM J. Imaging Sci. 7, 1588–1623 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lanza, A., Morigi, S., Sgallari, F.: Convex Image Denoising Via Non-convex Regularization, Scale Space and Variational Methods in Computer Vision, pp. 666–677. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  14. Li, M.-M., Li, B.-Z.: A novel weighted anisotropic total variational model for image applications. Signal Image Video Process. 16(1), 211–218 (2022)

    Article  Google Scholar 

  15. Thanh, D.N.H., Prasath, V.B., Hieu, L.M., Dvoenko, S.: An adaptive method for image restoration based on high-order total variation and inverse gradient. Signal Image Video Process. 14(6), 1189–1197 (2020)

    Article  Google Scholar 

  16. Glowinski, R.: ADMM and non-convex variational problems, splitting methods in communication, imaging, science, and engineering. Sci. Comput. 144, 251–299 (2016)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Driss Meskine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sniba, F., Karami, F. & Meskine, D. ADMM algorithm for some regularized Perona–Malik equation and applications to image denoising. SIViP 17, 609–617 (2023). https://doi.org/10.1007/s11760-022-02267-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02267-3

Keywords