Skip to main content
Log in

CNN models for EEG motor imagery signal classification

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Motor imagery (MI) electroencephalography (EEG) signal classification plays an important role in brain–computer interface (BCI), which gives hope to amputees and disabled people.This paper proposes a number of convolutional neural networks (CNNs) models for EEG MI signal classification, and it also proposes a method for enhancing the classification accuracy by feeding the CNN model with different frequency bands filters, which shows a significant improvement. The proposed models are: (1) Basic model, which is the simplest model with only one layer and no convolution layers. (2) CNN1D where the convolution is carried out along time. (3) CNN2D, where time and sensor channels are presented as 2D signals and convolution is carried out along both of them. (4,5) CNN3D and TimeDist, where the EEG signals are represented as video signals. (6) CNN1D_MF, where MF stands for multiband frequency, which is a modified version of the CNN1D model with multiple frequecy bands input. Physionet (5 classes) and BCI Competition IV-2a (4 classes) datasets were used in the evaluation. The software used for this paper, namely Coleeg, works on Google\(\mathrm{^{TM}}\) Colaboratory and Python language. The validation accuracy, validation kappa, and time were measured and compared to three existing models, which are: EEGNet, ShallowConvNet, and DeepConvNet. The results show that CNN1D_MF model has the best accuracy results, with 58.0% and 69.2% for Physionet and BCI Competition IV-2a datasets, respectively. Coleeg code is available under an open-source license to be an initiative for collaboration in EEG signal classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roy, Y., et al.: Deep learning-based electroencephalography analysis: a systematic review. J. Neural Eng. 16(5), 051001 (2019)

    Article  Google Scholar 

  2. Al-Saegh, A., Dawwd, S.A., Abdul-Jabbar, J.M.: Deep learning for motor imagery EEG-based classification: a review. Biomed. Signal Process. Control 63, 102172 (2021)

    Article  Google Scholar 

  3. Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019)

    Article  Google Scholar 

  4. Merlin Praveena, D., Angelin Sarah, D. & Thomas George, S.: Deep learning techniques for EEG signal applications: a review. IETE J. Res. 1–8 (2020)

  5. Li, G., Lee, C.H., Jung, J.J., Youn, Y.C., Camacho, D.: Deep learning for EEG data analytics: a survey. Concurr. Comput. Pract. Exp. 32(18), e5199 (2020)

    Article  Google Scholar 

  6. Hosseini, M.-P., Hosseini, A., Ahi, K.: A review on machine learning for EEG signal processing in bioengineering. IEEE Rev. Biomed. Eng. 14, 204–218 (2020)

    Article  Google Scholar 

  7. Yasin, S., et al.: EEG based major depressive disorder and bipolar disorder detection using neural networks: a review. Comput. Methods Programs Biomed. 202, 106007 (2021)

    Article  Google Scholar 

  8. Boonyakitanont, P., Lek-Uthai, A., Chomtho, K., Songsiri, J.: A review of feature extraction and performance evaluation in epileptic seizure detection using EEG. Biomed. Signal Process. Control 57, 101702 (2020)

    Article  Google Scholar 

  9. Dai, M., Zheng, D., Na, R., Wang, S., Zhang, S.: EEG classification of motor imagery using a novel deep learning framework. Sensors 19(3), 551 (2019)

    Article  Google Scholar 

  10. Gu, X., et al.: EEG-based brain–computer interfaces (BCIS): a survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications. IEEE/ACM Trans. Comput. Biol. Bioinform. 18, 1645–1666 (2021)

    Article  Google Scholar 

  11. Henry, J.C.: Electroencephalography: basic principles, clinical applications, and related fields. Neurology 67(11), 2092–2092 (2006)

    Article  Google Scholar 

  12. Wolpaw, J.R.: Brain–computer interfaces. In: Vinken, P., Bruyn, G. (eds.) Handbook of Clinical Neurology, pp 67–74. Elsevier, New York (2013)

    Google Scholar 

  13. Li, Y., Wen, P.P., et al.: Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain–computer interface. Comput. Methods Programs Biomed. 113(3), 767–780 (2014)

    Article  Google Scholar 

  14. Zhao, X., et al.: A multi-branch 3D convolutional neural network for EEG-based motor imagery classification. IEEE Trans. Neural Syst. Rehabil. Eng. 27(10), 2164–2177 (2019)

    Article  Google Scholar 

  15. Sharma, S., Sharma, R.R.: Variational mode decomposition-based finger flexion detection using ecog signals. In: Katsaropoulos, C. (ed.) Artificial Intelligence-Based Brain-Computer Interface, pp. 261–282. Elsevier, New York (2022)

    Chapter  Google Scholar 

  16. Zhang, D., Yao, L., Chen, K., Monaghan, J.: A convolutional recurrent attention model for subject-independent EEG signal analysis. IEEE Signal Process. Lett. 26(5), 715–719 (2019)

    Article  Google Scholar 

  17. Wijaya, A., Adji, T.B., Setiawan, N.A.: Improving multi-class EEG-motor imagery classification using two-stage detection on one-versus-one approach. Commun. Sci. Technol. 5(2), 85–92 (2020)

    Article  Google Scholar 

  18. Zhang, C., Kim, Y.-K., Eskandarian, A.: EEG-inception: an accurate and robust end-to-end neural network for EEG-based motor imagery classification. J. Neural Eng. 18(4), 046014 (2021)

    Article  Google Scholar 

  19. Zhu, X., et al.: Separated channel convolutional neural network to realize the training free motor imagery BCI systems. Biomed. Signal Process. Control 49, 396–403 (2019)

    Article  Google Scholar 

  20. Park, Y., Chung, W.: Optimal channel selection using correlation coefficient for CSP based EEG classification. IEEE Access 8, 111514–111521 (2020)

    Article  Google Scholar 

  21. Dai, G., Zhou, J., Huang, J., Wang, N.: Hs-cnn: a cnn with hybrid convolution scale for eeg motor imagery classification. J. Neural Eng. 17(1), 016025 (2020)

    Article  Google Scholar 

  22. Sun, Y., Lo, F.P.-W., Lo, B.: Eeg-based user identification system using 1d-convolutional long short-term memory neural networks. Expert Syst. Appl. 125, 259–267 (2019)

    Article  Google Scholar 

  23. Roots, K., Muhammad, Y., Muhammad, N.: Fusion convolutional neural network for cross-subject EEG motor imagery classification. Computers 9(3), 72 (2020)

    Article  Google Scholar 

  24. Zhang, D., Chen, K., Jian, D., Yao, L.: Motor imagery classification via temporal attention cues of graph embedded EEG signals. IEEE J. Biomed. Health Inform. 24(9), 2570–2579 (2020)

    Article  Google Scholar 

  25. Fadel, W., Wahdow, M., Kollod, C., Marton, G., Ulbert, I.: Chessboard EEG images classification for BCI systems using deep neural network. In: Guo, Y.C.N.L.U.M. (ed.) International Conference on Bio-inspired Information and Communication Technologies, pp. 97–104. Springer, Berlin (2020)

    Google Scholar 

  26. Fan, C.-C., et al.: Bilinear neural network with 3-d attention for brain decoding of motor imagery movements from the human EEG. Cognit. Neurodyn. 15(1), 181–189 (2021)

    Article  Google Scholar 

  27. Coleeg software on github. https://github.com/malnaanah/coleeg. [Online; accessed 6-December-2021]

  28. Lawhern, V.J., et al.: Eegnet: a compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 15(5), 056013 (2018)

    Article  Google Scholar 

  29. Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for EEG decoding and visualization. Human Brain Mapp. 38(11), 5391–5420 (2017)

    Article  Google Scholar 

  30. Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  31. Bci competition iv. http://www.bbci.de/competition/iv/. [Online; accessed 6-December-2021]

  32. Brunner, C., Leeb, R., Müller-Putz, G., Schlögl, A., Pfurtscheller, G.: Bci competition 2008–graz data set A. Institute for Knowledge Discovery (Laboratory of Brain–Computer Interfaces), Graz University of Technology 16, 1–6 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Alnaanah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alnaanah, M., Wahdow, M. & Alrashdan, M. CNN models for EEG motor imagery signal classification. SIViP 17, 825–830 (2023). https://doi.org/10.1007/s11760-022-02293-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02293-1

Keywords

Navigation