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Abstract

Convolutional neural network models, as well as the training sam-

ples necessary, have grown in size in recent years. Mixed Sample

Data Augmentation is provided to further improve the model’s perfor-

mance, and it has yielded good results.Mixed Sample Data Augmen-

tation allows the network to generalize more effectively and improves

the baseline performance of the model. The mixed sample strate-

gies proposed so far can be broadly classified into interpolation and

masking. However, interpolation-based strategies distort the data dis-

tribution, while masking-based strategies can obscure too much infor-

mation. Although Mixed Sample Data Augmentation has been proven

to be a viable technique for boosting deep convolutional model base-

line performance, generalization ability, and robustness, there is still

room for improvement in terms of image local consistency and data

distribution.In this research, we present a new Mixed Sample Data

Augmentation that uses random masking to increase the number of

image masks while retaining the data distribution and high-frequency

filtering to sharpen the images in order to emphasize recognition

regions. Our experiments on CIFAR-10, CIFAR-100, Fashion-MNIST,

SVHN, and Tiny-ImageNet datasets show that the LMix improves

the generalization ability of state-of-the-art neural network architec-

tures. And our method enhances the robustness of adversarial samples.

Keywords: Mixup, Data Augmentation
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1 Introduction

Deep convolutional neural networks have shone in various computer vision
tasks, such as image classification [1, 2, 5], object detection [29, 30], semantic
segmentation [14], and image super-resolution [15]. Deep convolutional neural
networks follow the empirical risk minimization principle[16] to minimize the
average error when performing training. Also, when the deep convolutional
neural network is used to extract features from an input image, the larger the
training sample, the greater the learning effect and generalization capacity of
the model.For instance, the network of Pierre Foret et al[1]. was modeled using
the JFT-300M dataset [31] with 4.8 billion parameters. Dhruv Mahajan et al.
[2] used the ImageNet-22k dataset to model their network, which has 8.2 bil-
lion parameters. Tan et al[3]. used the ImageNet-22k dataset to model their
network, which has 1.2 billion parameters.To further improve the training accu-
racy and speed, many scholars have proposed some training strategies, such
as regularization techniques, data augmentation strategies [6, 8–10], etc. The
regularization technique prevents overfitting in networks with more parame-
ters than input data, as well as algorithmic generalization by avoiding training
coefficients of perfect-fit data samples.Data augmentation can prevent model
overfitting and increase the number of samples to improve model generaliza-
tion, mainly including geometric space change, pixel color transformation, and
multiple sample fusion.

(a) LMix. (b) Mixup. (c) CutMix.

Fig. 1 Generated images of CutMix, LMix, and Mixup on the CIFAR dataset

Currently, mixed sample data augmentation [8–12] techniques based on
Vicinal Risk Minimisation [13] have obtained good results in a variety of appli-
cations, particularly classification tasks. The Vicinal Risk Minimisation based
data augmentation approach extracts additional dummy samples from the
training samples to boost support for the training distribution.This also leads
to the goal of expanding samples to increase data space without distorting the
data distribution; nevertheless, larger samples unavoidably have distorted data
distribution.To ensure that the data enhancement strategy can produce good
results for the network, the following characteristics should be maintained: the
virtual samples and the real samples should have a good acquaintance; the data
augmentation strategy can improve the model’s generalization ability; and the
data augmentation strategy can improve the model’s robustness against noise.
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Mixed Sample Data Augmentation is the modification of sample data to
build an extended dataset for training models. Mixed Sample Data Augmen-
tation proposed so far is broadly classified into two types: interpolation and
masking.Mixed Sample Data Augmentation for Interpolation has Mixup [8],
which is a Mixed Sample Data Augmentation based on the idea of Vicinal Risk
Minimisation, and Mixup suggests a general vicinal distribution, the mixed
distribution, as illustrated in Figure 1(b).Mixed Sample Data Augmentation
for masking has CutMix[9], which proposes patches are cut and pasted among
training images where the ground truth labels are also mixed proportionally to
the area of the patches, as illustrated in Figure 1(c). Both strategies improve
the baseline performance of the deep convolutional model. In terms of picture
data distribution, CutMix trumps Mixup.

In this paper, we propose a new Mixed Sample Data Augmentation LMix,
as illustrated in Figure 1(a). The main ideas are as follows: (1) use random
masking to increase the number of image masks while effectively ensuring the
local consistency of the image. (2) use high frequency filtering to sharpen the
image to highlight the recognition area. The rest of this paper is organized as
follows. In Section 2, we review the existing work on data enhancement strate-
gies. Then, we present the implementation of the LMix algorithm in Section
3. In Section 4, we conduct a large number of experiments to demonstrate
the effectiveness and efficiency of the proposed algorithm. Finally, we draw
conclusions in Section 5.

2 Related Work

Data Augmentation: As the deep network deepens, the number of learning
parameters required increases, which inevitably leads to overfitting. When the
dataset is too small, too many parameters can fit all the characteristics of the
dataset rather than the commonalities between the data [25, 26]. Data augmen-
tation generates virtual samples from real samples to expand the dataset size,
which can alleviate the model overfitting problem and make the training data
as close as possible to the test data, thus improving the accuracy. At the same
time, data augmentation can force the model to improve robustness and make
the model more generalizable.Early data augmentation algorithms were trans-
formations of images using geometric transformations including flip, rotate,
crop, distort, scale, etc., and color transformations including noise, blur, color
transformation, erase, fill, etc.Lopes et al. [4] added Gaussian blocks to Cutout
to make the model more stable without losing model accuracy by adding noise
to randomly selected blocks in the input image. Also, this method can be
used in combination with other regularization methods and data enhancement
strategies.He et al. [5] trained the deep residual network with random left-right
flipping and cropping of the image data to improve the generalization ability of
the model. This allowed the data samples to be expanded and greatly improved
the generalization ability of the model.DeVries et al. [6] proposed masking
regularization, a data augmentation approach comparable to random erasure.
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They apply random masking on the image, masking it with a fixed-size rectan-
gle. Within the rectangle, all values are set to 0 or other solid color values, and
the erased rectangular section may or may not be totally in the picture.Taylor
and Nitschke [7] analyzed the effectiveness of geometric and photometric (color
space) transformations. They analyzed geometric changes such as flipping,
as well as color space transformations such as color dithering (random color
manipulation), edge improvement, and principal component analysis. Simply
conducting simple image processing on individual photographs might lead to
a slew of issues. For instance, operations such as flip, shear, and rotate are not
safe for the dataset [27], while the color transformation enhancement approach
is biased from a color space perspective with more diversity of color variations,
resulting in insufficient enhancement and poor learning and underfitting of the
color space, while the transformation is unsafe.
Mixup: Data augmentation not only has good generalization ability but also
has excellent robustness, both for data containing noisy labels and against
sample attacks. The fused images obtained by the multisample fusion approach
are difficult to understand from the human perspective, yet the experimental
results are excellent. Sample fusion proposes many data augmentation strate-
gies to improve the model’s accuracy and generalization capabilities in order
to improve the model’s baseline performance.Zhang et al. [8] proposed Mixup,
a method for mixing two images, as a data-agnostic and simple data-expansion
method. By performing a simple random weighted summation of two random
samples from the real sample, while the labels of the samples are weighted sum-
mation correspondingly, the prediction results are lost with the labels after the
weighted summation, and the parameters are updated in the reverse deriva-
tive. However, the mixup can distort the data distribution of the image, while
the generated virtual samples are not very interpretable.Yun et al. [9] proposed
Cutmix, Mixed Sample Data Augmentation for Masking. Two samples are ran-
domly selected from real samples, a rectangular cut box is randomly generated
to crop the corresponding position of one image, and then the corresponding
position of another image is placed at the position where the image is cropped
to generate a new sample, and the loss function is calculated using a weighted
summation. However, using the regular cropping method can cause the image
to lose a lot of information.Vera et al. [10] proposed an extension of input data
blending to include intermediate hidden layer output mixing. The approach is
designed to modify the input data in a smoother and more uniform manner,
resulting in increased model performance and generalization. Kim et al. [11]
proposed a method based on significance and local statistics for the given data.
They added significance analysis to CutMix. The significance regions of indi-
vidual samples are first calculated, only the significance regions are cropped,
and then some complex optimization operations are added.Harris et al. [12]
proposed an improved method based on CutMix, and they verified that the
masking mixing method is more advantageous than the interpolated mixing
method in terms of preserving image data distribution. They also designed
an irregular mask to mask the image as the spatial size of the data samples
increased.
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3 Method

We discover that masked mixed sample data augmentation is more success-
ful than interpolated mixed sample data augmentation in preserving data
distribution, which is especially noticeable for convolutional neural networks.
Convolutionalneural networks are locally consistent, which means that each
neuron is only linked to one portion of the input neuron at a specified geo-
graphical position. Neurons are locally linked in the spatial dimension but
completely connected in the depth dimension in picture convolution proce-
dures.Local pixel connections are also stronger in the two-dimensional picture
itself. This local connectedness guarantees that the learnt filter responds to the
local input characteristics as strongly as possible. It is extremely critical for
neural networks to successfully preserve the pictures’ local consistency. Mean-
while, the interpolative mixed sample data augmentation has a weakness in
that the number of masks is not fully guaranteed when just regular masks are
used to act on the picture, thus we must increase the number of masks while
keeping local consistency.

Fig. 2 Virtual sample of sample fusion acquired from CIFAR-100

In this section, we propose LMix, mixed sample data augmentation that
provides the greatest results in terms of local consistency and the number of
masks in the picture, as shown in Figure 2. LMix employs an masking mixed
sample data augmentation to preserve the image’s local consistency.

Its algorithm is implemented as:
Let x ∈ RW×H×C denote a training set, y denote the training set’s label,

and (xA, yA) and (xB , yB) represent two feature target vectors chosen at ran-
dom from the training data. LMix’s purpose is to create a new sample (x̂, ŷ)
by merging two training samples (xA, yA) and(xB , yB). The resulting training
sample(x̂, ŷ) is utilized to train the original loss function-trained model. It is
defined as follows.

x̂ = mask·xA + (1−mask)·xB (1)

ŷ = λyA + (1− λ)yB (2)
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where mask ∈ {0, 1}W×H is the binary mask, which refers to the bits
deleted and filled from the two pictures, and ′1′ represents the binary mask
filled with 1. As in Mixup [8], the combined ratio λ between the two data points
is obeying the Beta(α, α) distribution.Compared to Cutmix [9],which directly
intercepts a regular patch from a image to replace the image region of the
target image, we use a mask made by combining a single region and its adjacent
regions, which can reduce the number of binary mask conversions.To obtain
the binary mask , we first apply the two-dimensional discrete Fourier transform
to the image to convert it from the spatial domain to the frequency domain,
and then obtain the low-frequency image of the image, the high-frequency
component of the image through the low-frequency component, and the high-
frequency filtered and enhanced image of the image through the high-frequency
component.We define Z as a complex random variable with a value domain of
Z = CH×W and densities of PR(Z) = N(0, IW×H) and PI(Z) = N(0, IW×H).
The real and imaginary components of the input are denoted by R(Z) and
I(Z), respectively. The amplitude of the sampling frequency corresponding to
the Ii, jth bin of the two-dimensional discrete Fourier transform is denoted by
freq(w, h)[i, j]. By attenuating the high-frequency component of Z, a low-pass
filter is created. The two-dimensional discrete Fourier transform is employed in
particular for a specified attenuation power. By attenuating the high-frequency
component of Z, we may create a low-pass filter.

fLP (z, δ)[i, j] =
z[i, j]

freq(w, h)[i, j]
(3)

The image high-pass filter is obtained by the obtained low-pass filter.

fHP (z, δ) = 1− fLP (z, δ) (4)

The sharpened image is then obtained by passing it through a high-pass
filter.

gmask(x, y) = f−1{[1 + k · fHP (z, δ)]F (u, v)} (5)

where gmask(x, y) denotes the high-frequency filtered enhanced
image,F (u, v) denotes the Fourier variation of the original image,FHP (z, δ)
denotes the high-pass filter, δ is the given attenuation frequency, and f−1

denotes the discrete Fourier inverse transform.Finally obtaining the sampled
binary mask mask now all that remains is to convert the grayscale image to
a binary mask such that the average is some given λ. Let top(n, x) return a
set containing the top n elements of the input x. Setting the value of the top
λ,w, h elements of some grayscale image g to ′1′ and the value of all other
elements to ′0′, we obtain a binary mask with an average λ.

mask(λ, g)[i, j] =

{

1, ifg[i,j] ∈ top(λwh, g)

0, otherwise
(6)
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We first sample a random complex tensor whose real and imaginary compo-
nents are both independent and Gaussian distributed. Then, each component
is scaled according to its frequency by the parameter δ, such that higher δ val-
ues correspond to increased attenuation of high-frequency information. Next,
the Fourier inverse transform of the complex tensor is performed and its real
part is taken to obtain a grayscale image. Finally, the top scale of the image
is set to ′1′ and the rest of the scale to ′0′ to obtain the binary mask.

4 Experiment

In this section, we apply LMix to ResNet [19], DenseNet [21], and WideRes-
Net [20] models on the CIFAR-10, CIFAR-100 [17], Fashion-MNIST, SVHN,
and Tiny-ImageNet [18] datasets for image classification tasks to evaluate the
enhancements and generalization improvements to the model baseline that
LMix can provide. To compare and assess the performance of several mixed
sample data augmentation for boosting the generalization effect and strength-
ening the baseline, the same hyperparameters were utilized for all models. In
addition, the settings of the mixed-sample data augmentation techniques that
provided the best results in the respective publications were picked for all of
them. We replicate all studies when possible and publish the average perfor-
mance and standard deviation following the last phase of training. In all tables,
we highlight the best outcomes and those that are within their margin of error.
The uncertainty estimate is the standard deviation of 5 replicates.

4.1 Image Classification

4.1.1 CIFAR Classification

This section first discusses the results of the image classification task on the
CIFAR 10/100 dataset. On the CIFAR dataset we train: the PreAct-ResNet18
[19], WideResNet-28-10 [20], DenseNet-BC-190 [21], and PyramidNet-272-200
[22] models. We found that the regularization methods including cutout [6],
mixup [8], CutMix [9], and FMix [12] need a longer training time to reach
convergence. As a result, we set the epoch of all models to 300, the initial
learning rate to 0.1, and decay at 75, 150, and 225 epochs in multiples of 0.1,
with a batch size of 128. Table 1 compares the performance of the approach
to that of other cutting-edge data augmentation and regularization methods.
All trials were repeated five times, and the best performance during training
is presented as the average.
Hyperparameter setting: We set the hyperparameter α of LMix to 1 and
the decay rate δ to 3. Set the cropping area of Cutmix [9] and Cutout [6] to
16×16. For mixup, we set the hyperparameter α to 1, set the hyperparameter α
and decay rate δ of FMix [12] to 1 and 3, and the hyperparameters α of Patchup
[10],Patchupprob,x, and block size are set to 2, 0.7, 0.5, and 7, respectively.
LMix is applicable to a variety of models:As shown in Table I, LMix
applies to various convolutional neural networks, while LMix significantly
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Table 1 The accuracy of the approach for the image classification task in CIFAR-10
using the PreAct-ResNet-18, WideResNet-28-10, DenseNet-BC-190 (Dense), and
PyramidNet-272-200 models.

Data set Model Baseline FMix Mixup CutMix LMix

CIFAR-10

ResNet-18 94.62 96.14 95.67 95.97 96.32
WRN 95.32 96.41 96.69 96.63 96.58
Dense 96.32 97.30 97.01 96.95 97.36
Pyrmid 97.31 98.54 97.90 98.18 98.58

Table 2 Accuracy of the algorithm using PreAct-ResNet-18,PreAct-ResNet-34,
WideResNet-28-10, and DenseNet-BC-190 models to test the algorithm for the image
classification task in CIFAR-100.

Data set Model Baseline FMix Mixup CutMix LMix

CIFAR-100

ResNet-18 75.12 79.65 77.34 78.48 79.85
ResNet-34 76.58 81.55 78.54 79.56 81.86
Dense 78.24 82.03 81.95 81.84 81.91
Pyrmid 81.64 83.75 83.23 82.69 83.95

Fig. 3 Effect of varying the value of hyperparameter α on the baseline accuracy of various
algorithms under the CIRAF-100 data set.

improves the baseline performance of various lightweight models, and for the
ResNet-18 [19] model, LMix improves the most accuracy over the baseline per-
formance by 1.51% and on the average accuracy over the baseline performance
by 1.68%. For the WideResNet-28 [20] model, LMix improves 1.23% over the
maximum accuracy of the baseline performance and 1.29% over the average
accuracy of the baseline performance. For the DenseNet [21] model, LMix
improved the maximum accuracy over baseline performance by 1.05% and the
average accuracy over baseline performance by 1.11%. For the Pyramid [22]
model LMix improved the maximum accuracy over the baseline performance
by 1.32% and the average accuracy over the baseline performance by 1.33%.
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LMix performance on CIFAR-10/100:The results in Table II show that
the same models were trained on the CIFAR-10 dataset, and LMix provided
significant improvements over the other hybrid sample enhancement algo-
rithms. For ResNet-18, LMix outperforms cutout by 1.16%, Mixup by 0.72%,
Cutmix by 0.42%, FMix by 0.29%, and patchup by 0.62% in terms of accu-
racy for the image classification task. LMix also performs very well on the
CIFAR-100 dataset, as shown in Table II. For ResNet-18, LMix outperformed
the baseline by 4.73%, outperformed FMix by 0.2%, outperformed CutMix by
0.37%, and outperformed Mixup by 2.51% on the image classification task.

The results obtained in Figure 3 indicate that LMix has the highest accu-
racy for the image classification task trained with ResNet-18 on CIFAR-100
with hyperparameter α = 1, while outperforming Mixup, CutMix, and FMix.
we have explored the performance of LMix for ResNet-18 and ResNet-34 on
CIFAR-100. As shown in Figure 4, we found an improvement in accuracy for
both classification tasks.

4.1.2 Tiny-ImageNet

We trained the PreAct-ResNet18 network on the Tiny-ImageNet [18] dataset,
which contains 200 classes with 500 training images and 50 test images per class
with a resolution of 64 × 64 . We trained the model with an initial learning rate
of 0.1 for 200 epochs, and we used a decay learning rate of 0.1 at 150 and 180
epochs. we set the momentum to 0.9. In the case of mixup weights λ, for the
mixup, we set α = 1 as described in the mixup. For CutMix, we chose α = 1,
which is the best performance in [0.2,0.5,1.0], while for FMix, we chose α = 1.0,
for Cutout and CutMix with a cropping region of 16 × 16. In the experiments

Table 3 Accuracy of the image
classification task using PreAct-ResNet-18 test
algorithm in Tiny-ImageNet.

Model MaxAcc(% ) Acc(% )

Baseline 55.94 55.86
+CutMix 64.08 63.84
+FMix 63.33 62.23
+Mixup 61.96 61.89
+LMix 64.16 63.92

using the Tiny-ImageNet dataset, compared with other hybrid baselines, LMix
showed significant improvements in generalization performance and improved
model accuracy (Table III). With the same number of epochs trained, LMix
achieves an accuracy of 64.06%, which is 0.08% higher than the strongest
baseline.
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4.1.3 Fashion-MNIST

We train the PreAct-ResNet18 network on the Fashion-MNIST dataset, a fash-
ion product dataset containing 70,000 28×28 grayscale images in 10 categories
with 7,000 images in each category. The training set has 60,000 images and the
test set has 10,000 images. Fashion MNIST shares the same image size, data
format, and training and test splitting structure as the original MNIST. We
trained the PreAct-ResNet18 [19] model, where we trained the model with an
initial learning rate of 0.1 for 200 epochs, and we used a decay learning rate of
0.1 at 150 and 180 epochs. we set the momentum to 0.9. in the case of mixup
weights λ, for mixup, we set α = 1 in mixup. Set the cropping area for Cutout
and CutMix to 16 × 16.

Table 4 Training PreAct-ResNet18 on the
Fashion-MNIST dataset to evaluate LMix.

Model MaxAcc(% ) Acc(% )

Baseline 95.70 95.52
+CutMix 96.02 95.93
+Mixup 96.26 96.20
+LMix 96.64 96.62

In the experiments using the Fashion-MNIST dataset, compared with other
hybrid baselines, LMix showed significant improvements in generalization per-
formance and improved model accuracy (Table IV). With the same number
of epochs trained, LMix achieves an accuracy of 96.62%, which is 1.1% higher
than the strongest baseline.

4.1.4 SVHN

We train multiple image classification network models on the SVHN dataset,
a numerical classification benchmark dataset containing 600,000 32×32 RGB
images of printed digits (from 0 to 9) cropped from door sign images. The
cropped images are centered on the digit of interest, but nearby digits and
other distractors are retained in the images.SVHN has three sets: a training
set, a test set, and an additional set containing 530,000 images that are less
difficult and can be used to aid in the training process. To evaluate the effect
of LMix on the SVHN dataset, we applied LMix on PreAct-ResNet18,PreAct-
ResNet34 and WideResNet-28-10, respectively. We set the epoch of the model
to 300, the initial learning rate to 0.1, and decay at epochs of 75, 150, and
225 in multiples of 0.1, and set the batch size to 128. Also, we repeated the
experiments several times to obtain the most reliable results.

LMix performance in SVHN: The results in Table V show that the same
model is trained on the SVHN dataset and LMix provides significant improve-
ments over other mixed-sample enhancement algorithms. For ResNet-18, LMix
provides 0.48% higher accuracy than Mixup and 0.44% higher than Cutmix
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Table 5 Accuracy of the algorithm using PreAct-ResNet-18,PreAct-ResNet-34,
WideResNet-28-10, and DenseNet-BC-190 models to test the algorithm for the image
classification task in CIFAR-100.

Data set Model Baseline Mixup CutMix LMix

SVHN
ResNet-18 96.53 96.63 96.57 97.01
ResNet-34 97.04 97.21 97.44 97.66
WRN 97.28 97.48 97.69 97.73

for the image classification task. Also when ResNet-34 and WideResNet-28-10
are applied, there is a good improvement in the accuracy and generalization
of the model.

4.2 Combining MSDAs

We trained the PreAct-ResNet-18 network on the CIFAR-100 dataset and used
it to evaluate the effect of the algorithm combination. We train 300 epoch
models with an initial learning rate of 0.1, and we use a decay learning rate
of 0.1 at 100, 150, and 225 epochs, with batch size set to 128. for Mixup,
we set the hyperparameter α to 1. We also set the hyperparameters αand
δ of LMix to 1 and 3, respectively. we set the hyperparameters α and delta

of LMix+ The hyperparameter alpha is set to 1 for the Mixup combination.
As shown in Figure 4, the accuracy of LMix for the image classification task

Fig. 4 Training PreAcResNet-34 on the CIFAR-100 dataset

with the PreAct-ResNet-34 model trained under the CIFAR-100 dataset is
significantly higher than the baseline performance of Mixup and the original
model, while the combined approach further improves the accuracy of the
model after combining LMix with Mixup.
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4.3 Robustness

When performing image classification tasks, the neural network is first trained
and then minimized concerning the error on the training sample, a learning
rule called empirical risk minimization. This learning rule is called empirical
risk minimization. Small changes in the data samples can have a substantial
influence on the model’s performance. To achieve quicker computing speed,
most contemporary neural networks build the model in a linear model, result-
ing in a relatively poor battle against disturbing data. Certain data-dependent
regularization strategies, such as interpolating the data to train the model,
might lessen the fragility of the adversarial cases. Therefore, the robustness
of the regularization model to adversarial instances can be used as a criterion
for comparison. For FSGM [23], it is necessary to perform adversarial sample
production of the original image x, its label y, a good classification model M ,
the parameters x of the classification model M , and also to generate an attack
noise η using FGSM.

η = ǫsign(▽xJ(θ, x, y)) (7)

where J(θ, x, y) denotes the loss function of the model with parameter θand
ǫ denotes the control perturbation. The symbolic function sign() denotes the
direction of the extracted gradient, x denotes the original sample and y denotes
the true label of M . Subsequently, the original image is added with the attack
noise η to obtain the adversarial sample x̂ of the original image x

x̂ = x+ η (8)

To evaluate the robustness of LMix against adversarial attacks, we compare

Fig. 5 Robust FGSM attack, (a) comparison at CIFAR-10 using the PreAc-tResNet-18
model, (b) comparison at CIFAR-100 using the PreAct-ResNet-34 model.

the performance of PreAct-ResNet-18 and PreAct-ResNet-34 on CIFAR-10
and CIFAR-100 with the adversarial examples generated by the FGSM attack
described in. Our experiments show that LMix is effective against attacks
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in most cases. Figure 5 shows a comparison of the impact of state-of-the-
art regularization techniques on the robustness of the model against FGSM
attacks.

5 Conclusion

In this paper, we introduce LMix, Mixed Sample Data Augmentation which
improves the classification performance and generalization ability of a model.
The model is improved by preserving the local consistency of the images and
then maximizing the number of masks. We run a series of analyses to ensure
the feasibility of the idea and then design preliminary experiments and find
that LMix performs very well on the classification task. It is 1.51% above the
baseline on the CIFAR dataset, yielding an optimal result of 96.35% while
outperforming other regularization methods in the same situation in terms
of classification accuracy. Our experimental results show that LMix excels in
both generalization performance and robustness against interference.
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References

[1] Foret P , Kleiner A , Mobahi H , et al. Sharpness-Aware Minimization
for Efficiently Improving Generalization[J]. 2020.

[2] D Mahajan, Girshick R , Ramanathan V , et al. Exploring the Limits of
Weakly Supervised Pretraining[J]. Springer, Cham, 2018.

[3] Tan M , Le Q V . EfficientNetV2: Smaller Models and Faster Training[J].
2021.

[4] Lopes R G , Yin D , Poole B , et al. Improving Robustness Without
Sacrificing Accuracy with Patch Gaussian Augmentation[J]. 2019.

[5] He K , Zhang X , Ren S , et al. Deep Residual Learning for Image
Recognition[J]. IEEE, 2016.

[6] Devries T , Taylor G W . Improved Regularization of Convolutional
Neural Networks with Cutout[J]. 2017.

[7] Taylor L , Nitschke G . Improving Deep Learning using Generic Data
Augmentation[J]. 2017.

[8] Zhang H , Cisse M , Dauphin Y N , et al. mixup: Beyond Empirical Risk
Minimization[J]. 2017.



Springer Nature 2021 LATEX template

14 Article Title

[9] Yun S , Han D , Chun S , et al. CutMix: Regularization Strategy to
Train Strong Classifiers With Localizable Features[C]// International
Conference on Computer Vision. 0.

[10] Verma V , Lamb A , Beckham C , et al. Manifold Mixup: Better
Representations by Interpolating Hidden States[J]. 2018.

[11] Kim J H , Choo W , Song H O . Puzzle Mix: Exploiting Saliency and
Local Statistics for Optimal Mixup[J]. 2020.

[12] Harris E , Marcu A , Painter M , et al. FMix: Enhancing Mixed Sample
Data Augmentation[J]. 2020.
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