Skip to main content
Log in

Comparative study on threshold selection for measuring characteristics of turbulent swirling flames in a miniature-scale swirl burner

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This study analyzes six threshold approaches for measuring swirling flame properties including flame length, lift-off height, maximum width, area, and flame pulsating displacements in terms of flame center of gravity, length, and width under three operating conditions. Flame video images are captured with the use of a high-speed camera for this objective. The image processing of frames obtained from a high-speed video was fulfilled by utilizing the intermittency distribution approach in order to compare the flame properties quantitatively. The findings show that the Huang technique binarizes the experimental images of the swirling flames the best of the six threshold methods, whereas the Minimum approach produces a large error in flame morphology prediction. After the Huang algorithm, the Yen and Renyi’s Entropy-based algorithms do well in forecasting flame morphology, respectively. When compared to the Huang algorithm, the Minimum technique reduces the flame length, maximum width, and area by approximately 34, 26, and 56% for fuel and airflow rates of 0.200 and 3 slpm, respectively. The two approaches of Otsu and Intermodes, on the other hand, yield almost identical flame characteristics. In addition, flame pulsating displacements in terms of center of gravity, length, and width exhibit linear dependency on the fuel flow rate (positive slope), and at a fixed fuel flow rate, pulsating displacement in terms of flame length is larger than pulsating displacement in terms of flame width. In addition, flame pulsating displacement in terms of center of gravity shows the least sensitivity to the fuel flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data that support the findings of this study are included within the article (and any supplementary files).

References

  1. Houssein, E.H., El-din Helmy, B., Oliva, D., Elngar, A.A., Shaban, H.: Multi-level thresholding image segmentation based on nature-inspired optimization algorithms: a comprehensive review. In: Oliva, D., Houssein, E.H., Hinojosa, S. (eds.) Metaheuristics in Machine Learning: Theory and Applications, pp. 239–265. Springer, Cham (2021)

    Chapter  Google Scholar 

  2. Oliva, D., Cuevas, E.: Digital image segmentation as an optimization problem. In: Oliva, D., Cuevas, E. (eds.) Advances and Applications of Optimised Algorithms in Image Processing, pp. 43–91. Springer, Cham (2017)

    Chapter  MATH  Google Scholar 

  3. Mehmet, S., Bülent, S.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging. 13(1), 146–165 (2004). https://doi.org/10.1117/1.1631315

    Article  Google Scholar 

  4. Xi, Z., Fu, Z., Hu, X., Sabir, S.W., Jiang, Y.: An investigation on flame shape and size for a high-pressure turbulent non-premixed swirl combustion. Energies 11(4), 930 (2018). https://doi.org/10.3390/en11040930

    Article  Google Scholar 

  5. Huang, L., Liu, C., Deng, T., Jiang, H., Wu, P.: Experimental investigation on the influence of central airflow on swirl combustion stability and flame shape. J. Therm. Anal. Calorim. 144(2), 503–514 (2021). https://doi.org/10.1007/s10973-020-10399-2

    Article  Google Scholar 

  6. Zhang, S., Cheng, X., Zhu, K., Yao, Y., Shi, L., Zhang, H.: Experimental study on curved flame characteristics under longitudinal ventilation in a subway tunnel. Appl. Therm. Eng. 114, 733–743 (2017). https://doi.org/10.1016/j.applthermaleng.2016.12.023

    Article  Google Scholar 

  7. Gao, W., Liu, N., Jiao, Y., Xie, X., Pan, Y., Li, Z., et al.: Flame length of non-buoyant turbulent slot flame. Proc. Combust. Inst. 37(3), 3843–3850 (2019). https://doi.org/10.1016/j.proci.2018.05.152

    Article  Google Scholar 

  8. Sun, X., Hu, L., Ren, F., Hu, K.: Flame height and temperature profile of window ejected thermal plume from compartment fire without facade wall. Int. J. Therm. Sci. 127, 53–60 (2018). https://doi.org/10.1016/j.ijthermalsci.2018.01.015

    Article  Google Scholar 

  9. Xie, K., Cui, Y., Wang, C., Cui, G., Wang, G., Qiu, X., et al.: Study on threshold selection method of continuous flame images of spray combustion in the low-pressure chamber. Case Stud. Therm. Eng. 26, 101195 (2021). https://doi.org/10.1016/j.csite.2021.101195

    Article  Google Scholar 

  10. Tao, C., Liu, B., Dou, Y., Qian, Y., Zhang, Y., Meng, S.: The experimental study of flame height and lift-off height of propane diffusion flames diluted by carbon dioxide. Fuel 290, 119958 (2021). https://doi.org/10.1016/j.fuel.2020.119958

    Article  Google Scholar 

  11. Zhou, Z., Chen, G., Zhou, C., Hu, K., Zhang, Q.: Experimental study on determination of flame height and lift-off distance of rectangular source fuel jet fires. Appl. Therm. Eng. 152, 430–436 (2019). https://doi.org/10.1016/j.applthermaleng.2019.02.094

    Article  Google Scholar 

  12. Maynard, T.B., Butta, J.W.: A physical model for flame height intermittency. Fire Technol. 54(1), 135–161 (2018). https://doi.org/10.1007/s10694-017-0678-7

    Article  Google Scholar 

  13. Gao, W., Liu, N., Jiao, Y., Xie, X., Pan, Y., Li, Z., et al.: Flame length of buoyant turbulent slot flame. Proc. Combust. Inst. 37(3), 3851–3858 (2019). https://doi.org/10.1016/j.proci.2018.05.153

    Article  Google Scholar 

  14. Zheng, L., Yu, M., Yu, S., Lu, C.: Measurement of flame height by image processing method. Adv. Mater. Res. 301–303, 983–988 (2011). https://doi.org/10.4028/www.scientific.net/AMR.301-303.983

    Article  Google Scholar 

  15. Liu, T., Bai, F., Zhao, Z., Lin, Y., Du, Q., Peng, Z.: Large eddy simulation analysis on confined swirling flows in a gas turbine swirl burner. Energies 10(12), 2081 (2017). https://doi.org/10.3390/en10122081

    Article  Google Scholar 

  16. O’Connor, J., Lieuwen, T.: Recirculation zone dynamics of a transversely excited swirl flow and flame. Phys. Fluids 24, 2893–2900 (2012). https://doi.org/10.1063/1.4731300

    Article  Google Scholar 

  17. Feikema, D., Chen, R.-H., Driscoll, J.F.: Enhancement of flame blowout limits by the use of swirl. Combust. Flame 80(2), 183–195 (1990). https://doi.org/10.1016/0010-2180(90)90126-C

    Article  Google Scholar 

  18. Fernandez-Pello, A.C.: Micropower generation using combustion: issues and approaches. Proc. Combust. Inst. 29(1), 883–899 (2002). https://doi.org/10.1016/S1540-7489(02)80113-4

    Article  Google Scholar 

  19. Ju, Y., Cadou, C., Maruta, K.: Microscale Combustion and Power Generation. Momentum Press, New York (2014)

    Google Scholar 

  20. Kyritsis, D.C., Roychoudhury, S., McEnally, C.S., Pfefferle, L.D., Gomez, A.: Mesoscale combustion: a first step towards liquid fueled batteries. Exp. Therm. Fluid Sci. 28(7), 763–770 (2004). https://doi.org/10.1016/j.expthermflusci.2003.12.014

    Article  Google Scholar 

  21. Maruta, K.: Micro and mesoscale combustion. Proc. Combust. Inst. 33(1), 125–150 (2011). https://doi.org/10.1016/j.proci.2010.09.005

    Article  MathSciNet  Google Scholar 

  22. Sheykhbaglou, S., Robati, S.M.: Development of a small power generation system with a miniature-scale swirl burner, controlled heat transfer, and thermoelectric generators. Eng. Res. Express. 4(2), 025006 (2022). https://doi.org/10.1088/2631-8695/ac6281

    Article  Google Scholar 

  23. Hosseini, S.E., Owens, E., Krohn, J., Leylek, J.: Experimental investigation into the effects of thermal recuperation on the combustion characteristics of a non-premixed meso-scale vortex combustor. Energies 11, 3390 (2018). https://doi.org/10.3390/en11123390

    Article  Google Scholar 

  24. Wu, M., Wang, Y., Yang, V., Yetter, R.A.: Combustion in meso-scale vortex chambers. Proc. Combust. Inst. 31(2), 3235–3242 (2007). https://doi.org/10.1016/j.proci.2006.08.114

    Article  Google Scholar 

  25. Shimokuri, D., Honda, Y., Ishizuka, S.: Flame propagation in a vortex flow within small-diameter tubes. Proc. Combust. Inst. 33(2), 3251–3258 (2011). https://doi.org/10.1016/j.proci.2010.06.091

    Article  Google Scholar 

  26. Shimokuri, D., Taomoto, Y., Matsumoto, R.: Development of a powerful miniature power system with a meso-scale vortex combustor. Proc. Combust. Inst. 36(3), 4253–4260 (2017). https://doi.org/10.1016/j.proci.2016.06.180

    Article  Google Scholar 

  27. Yang, X., Yang, W., Dong, S., Tan, H.: Flame stability analysis of premixed hydrogen/air mixtures in a swirl micro-combustor. Energy 209, 118495 (2020). https://doi.org/10.1016/j.energy.2020.118495

    Article  Google Scholar 

  28. Yang, X., Zhao, L., He, Z., Dong, S., Tan, H.: Comparative study of combustion and thermal performance in a swirling micro combustor under premixed and non-premixed modes. Appl. Therm. Eng. 160, 114110 (2019). https://doi.org/10.1016/j.applthermaleng.2019.114110

    Article  Google Scholar 

  29. Gao, W., Yan, Y., Huang, L., Zhang, W., Shen, K.: Numerical investigation on combustion characteristics of premixed hydrogen/air in a swirl micro combustor with twisted vanes. Int. J. Hydrog. Energy 46(80), 40105–40119 (2021). https://doi.org/10.1016/j.ijhydene.2021.09.193

    Article  Google Scholar 

  30. Sheykhbaglou, S., Robati, S.M.: Effects of coaxial airflow swirl number on combustion and flame characteristics of methane/air and n-butane/air flames in a miniature-scale swirl burner. Eng. Res. Express. 4(2), 025045 (2022). https://doi.org/10.1088/2631-8695/ac77dc

    Article  Google Scholar 

  31. Lefebvre, A.H., Ballal, D.R.: Gas Turbine Combustion: Alternative Fuels and Emissions, 3rd edn. Taylor & Francis, Abingdon (2010)

    Book  Google Scholar 

  32. Huang, L.-K., Wang, M.-J.J.: Image thresholding by minimizing the measures of fuzziness. Pattern Recognit. 28(1), 41–51 (1995). https://doi.org/10.1016/0031-3203(94)E0043-K

    Article  Google Scholar 

  33. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076

    Article  MathSciNet  Google Scholar 

  34. Prewitt, J.M.S., Mendelsohn, M.L.: The analysis of cell images*. Ann. N. Y. Acad. Sci. 128(3), 1035–1053 (1966). https://doi.org/10.1111/j.1749-6632.1965.tb11715.x

    Article  Google Scholar 

  35. Image Processing and Analysis in Java. Version 1.53q. https://imagej.nih.gov/ij/ (2022). Accessed 30 March 2022

  36. Yoon, J., Kim, M.-K., Hwang, J., Lee, J., Yoon, Y.: Effect of fuel–air mixture velocity on combustion instability of a model gas turbine combustor. Appl. Therm. Eng. 54(1), 92–101 (2013). https://doi.org/10.1016/j.applthermaleng.2013.01.032

    Article  Google Scholar 

  37. Xiong, C., Liu, Y., Fan, H., Huang, X., Nakamura, Y.: Fluctuation and extinction of laminar diffusion flame induced by external acoustic wave and source. Sci. Rep. 11(1), 14402 (2021). https://doi.org/10.1038/s41598-021-93648-0

    Article  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

SS contributed to project administration, writing—original draft, writing review and editing, conceptualization, and designing for fabrication. SK, MSc contributed to writing and editing, methodology, and resources.

Corresponding author

Correspondence to Soroush Sheykhbaglou.

Ethics declarations

Conflict of interest

I declare that the authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheykhbaglou, S., Karami, S. Comparative study on threshold selection for measuring characteristics of turbulent swirling flames in a miniature-scale swirl burner. SIViP 17, 1365–1373 (2023). https://doi.org/10.1007/s11760-022-02344-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02344-7

Keywords

Navigation